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Almost all computational models of the mind and brain ignore details about neuro-
transmitters, hormones, and other molecules. The neglect of neurochemistry in cogni-
tive science would be appropriate if the computational properties of brains relevant to
explaining mental functioning were in fact electrical rather than chemical. But there is
considerable evidence that chemical complexity really does matter to brain computa-
tion, including the role of proteins in intracellular computation, the operations of syn-
apses and neurotransmitters, and the effects of neuromodulators such as hormones.
Neurochemical computation has implications for understanding emotions, cognition,
and artificial intelligence.

1. Introduction. The functioning of brains in humans and other animals
involves dozens of chemical messengers, including neurotransmitters, hor-
mones, and other molecules. Yet almost all computational models of the
mind and brain ignore molecular details. Symbolic models such as those
based on production rules abstract entirely from neurological details (e.g.
Anderson 1993; Newell 1990). Neural-network computational models typ-
ically treat neuronal processing as an electrical phenomenon in which the
firing of one neuron affects the firing of all neurons connected to it by
excitatory and inhibitory links (e.g. Churchland and Sejnowski 1992;
Eliasmith and Anderson forthcoming; Levine 2000; Parks, Levine, and
Long 1998; Rumelhart and McClelland 1986; see also such journals as
Cognitive Science, Neural Computing, Neural Networks, and Neurocom-
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puting). The role of neurotransmitters and other molecules in determining
this electrical activity is rarely discussed.

The neglect of neurochemistry in cognitive science would be appropri-
ate if the computational properties of brains relevant to explaining mental
functioning were in fact electrical rather than chemical. But there is con-
siderable evidence that chemical complexity really does matter to brain
computation. I will review that evidence by discussing the role of proteins
in intracellular computation, the operations of synapses and neurotrans-
mitters, and the effects of neuromodulators such as hormones. Attending
to the ways in which the brain is a chemical as well as an electrical com-
puter provides a qualitatively different view of mental computation than
is found in traditional symbolic and connectionist models. I conclude with
a discussion of the implications of neurochemical computation for issues
involving emotions, cognition, and artificial intelligence. First some gen-
eral remarks are needed concerning the explanatory functions of compu-
tational models of mind.

2. Modeling the Mind. During the 1930s, Alan Turing and others produced
rigorous mathematical accounts of computation, and in the 1940s the first
general digital computers were built. The development of the theory and
practice of computation had a huge impact on psychology and the phi-
losophy of mind, because it showed how thought could plausibly be con-
strued as mechanical. Psychologists such as George Miller and philoso-
phers such as Hilary Putnam recognized the computational construal of
mind as a powerful alternative to behaviorist ideas that had tried to make
the mind go away. Allan Newell and Herbert Simon and other researchers
began to produce computer programs that model intelligent behavior.
Abstract models of computation include the Turing machine, which is
an imaginary device consisting of a tape with squares that contain a 0 or
1 and a head that can move from square to square. A table of very simple
instructions completely determines the movements and reading and writ-
ing behavior of the head. The Turing machine, and mathematically equiv-
alent abstractions such as recursive function theory, are very useful for
clarifying what computation is. But they play no direct role in explaining
particular mental functions. In order to explain particular kinds of mental
abilities such as problem solving and language use, researchers develop
specific kinds of computational models that posit mental representations,
such as rules, and computational procedures, such as forward chaining,
that operate on those rules. Rule-based systems are much better cognitive
models than Turing machines because they concretely describe mecha-
nisms that can replicate mental behavior. As far as abstract computational
power goes, rule-based systems are no more powerful than a Turing ma-
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chine, but they are much closer to capturing the mechanisms that underlie
cognitive functions.

Besides rules, many cognitive scientists espouse alternative or comple-
mentary ways of modeling the mind, involving such representations as
concepts, mental models, analogies, visual imagery, and artificial neural
networks (see Thagard 1996 for a concise survey). In particular, artificial
neural networks have the same abstract computational power as Turing
machines and rule-based systems, but they are advocated by many re-
searchers because they implement structures and procedures that seem to
capture more closely the operations of the brain. For example, the brain
uses distributed representations in which symbolic information is repre-
sented collectively by numerous simple neuronal elements, and uses mas-
sively parallel computations to draw inferences. Neural networks can be
used to implement rule-based systems, but they also can support modes
of computing qualitatively different from those in rule-based systems.

Most cognitive models using artificial neural networks describe the be-
havior of neurons by a parameter called activation, which represents the
firing rate of the neuron, i.e. the rate at which it sends an electrical signal
to other neurons. Recent models have more sophisticated dynamics, de-
scribing not only the rate of firing but the pattern of firing. Consider, for
example, a neuron that fires 5 times, with the firing state represented by a
1 and the resting state represented by a 0. The firing pattern 10101 and
the pattern 11100 both show the same rate of activation (firing 3 times
out of 5), but they can represent very different neuronal behaviors. Neural
networks that take into account such firing patterns are called spiking or
pulse networks, and they have computational advantages over networks
that only use rate codes. For example, there are functions that can be
computed by a single spiking neuron whose computation would require
many traditional rate-coding neurons (Maass and Bishop 1999, 79). More-
over, spiking neurons have psychologically important qualitative prop-
erties such as becoming synchronized with each other, and neural syn-
chrony has been proposed as a crucial ingredient in inference, analogy,
and consciousness (Engel et al. 1999; Hummel and Holyoak 1998; Shastri
and Ajjanagadde 1993). Thus spiking neural networks provide a promis-
ing new approach to computational modeling of the brain.

I have gone into this brief review of cognitive modeling to indicate the
form of argument that I want to develop. Just as rule-based models cap-
ture aspects of cognition that Turing machines do not address, and just
as neural networks capture aspects of cognition that rule-based systems
do not address, and just as spiking neural networks capture aspects of
cognition that rate-coded neural networks do not address, so chemical
neural networks have the potential to illuminate aspects of thinking that
purely electrical neural networks do not adequately address. In order to
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provide a useful supplement to existing computational accounts of mind,
a new account must show that it has quantitative and qualitative advan-
tages over old models, suggesting mechanisms of mental computing that
are more powerful and more biologically and psychologically natural than
in previous models. My task is to show that such advantages are to be
found in chemical neural networks that explicitly recognize molecular
mechanisms.

I do not mean to suggest that molecular models should supersede ex-
isting ones. Models are like maps, intended to correspond to reality but
varying greatly in the level of detail that is useful for different purposes.
To determine that Italy is south of Switzerland, a large scale map of the
world is appropriate, whereas a much more detailed map is better for
hiking in the Alps. Similarly, there are aspects of mental computing that
are conveniently and accurately describable by rule-based systems and
traditional electrical neural networks, but there are also aspects for which
it is explanatorily useful to move down to the molecular level.

3. Proteins and Cells. How neurons and neural networks can perform
computations is well understood. Each neuron receives and integrates elec-
trical signals from other neurons, then passes its own signal on to other
neurons to excite or inhibit their signaling. Neural networks are Turing
complete, in that they can compute any function that a Turing machine
can, and more importantly they can behave in ways that account for hu-
man cognitive functions. Only recently, however, have the computational
capabilities of non-neuronal cells been appreciated.

The human body contains trillions of cells, and a typical cell contains
around a billion protein molecules, with about 10,000 different kinds of
protein in each cell (Lodish et al. 2000). The outer membranes of cells
have receptors, which are proteins that bind signaling molecules circulat-
ing outside the cells. The receipt of a signaling molecule by a receptor
activates signal-transduction proteins within the cell that initiate chemical
reactions affected by enzymes, which are proteins that accelerate reactions
involving small molecules. The chemical pathways within a cell can lead
to diverse results, including cell division producing new cells, cell death,
and the production of new signaling molecules that are expelled from the
cell and then circulate to be bound by the receptors of other cells. For
example, when the hormone epinephrine (also known as adrenaline) is
produced by the adrenal gland in response to fright or heavy exercise, it
circulates through the blood stream and binds to cells with appropriate
receptors. These include liver cells that are stimulated to emit glucose into
the blood stream, and heart muscle cells that increase the heart’s contrac-
tion rate and the supply of blood to the tissues. The result is an increase
in available energy for major motor muscles.
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We can think of individual cells, whether neurons or not, as computers
that have inputs in the form of molecules that bind to receptor proteins,
outputs in the form of molecules emitted from the cells, and internal pro-
cesses carried out by chemical reactions involving proteins (Gross 1998).
Proteins can function as on-off switches, for example by the process of
phosphorylation in which proteins are modified by adding groups of atoms
including phosphorus. Signals within a cell can be rapidly amplified by
enzymes that can each activate hundreds of molecules in the next stage of
processing. Molecular computing within the cell is massively parallel, in
that many receptors can simultaneously initiate many chemical reactions
that proceed concurrently in the billion or so proteins in the cell.

Multi-cellular computing also exhibits massive parallelism as cells in-
dependently receive and send signals to each other. There are three types
of signaling by secreted molecules (Lodish et al. 2000, ch. 20). In autocrine
signaling, a cell signals itself by secreting molecules that bind to its own
receptors. For example, cells often secrete growth factors that stimulate
their own proliferation. In paracrine signaling, a secretory cell signals an
adjacent cell that has receptors for the secreted molecules. Neuronal sig-
naling is paracrine, with neurotransmitters as the molecular signals, but
there are also other kinds of paracrine signaling involved in cellular com-
munication. Adjacent cells can also communicate with each other more
directly than via secretions, by means of the attachment proteins that en-
able cells to adhere to each other and form tissues. The third type of
signaling by secreted molecules is endocrine, in which a cell secretes a mol-
ecule, called a hormone, that travels through blood vessels to be received
by distant target cells that may be several meters away. The computational
functions of hormones are discussed in Section 5.

Is describing proteins and cells as performing computations a stretched
metaphor that violates the mathematically precise notion of computation
developed by Turing and others? Not at all, for there are several recent
mathematical and experimental results that show that molecular processing
is computational in the most rigorous sense. Magnasco (1997) proved that
chemical kinetics is Turing universal in that the operations of a Turing
machine can be carried out by chemical reactions. Bray (1995) showed how
protein molecules can function as computational elements in living cells and
can even be trained like a neural network. Adleman (1994) demonstrated
that a hard combinatorial problem in computer science could be solved by
molecular computation involving strands of DNA. DNA can provide cells
with a kind of permanent memory, whereas protein operations serve to
process information. Thus the description of cells and proteins as carrying
out computations is more than metaphorical, and therefore is potentially
relevant to understanding mental computation. Whether it is actually rele-
vant requires looking more closely at the behavior of neurons.
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4. Neurotransmitters.

4.1. Properties of Neurotransmitters. The last section discussed the sig-
naling capabilities of cells in general, but was not meant to suggest that
organs such as the liver have mental properties. Human minds depend on
a particular kind of organ, the brain, which has billions of cells capable
of interacting with each other in special ways. A typical neuron takes input
from more than a thousand neurons, and provides output to thousands
of others, via special connections called synapses. Some synapses are elec-
trical, passing ions directly from one cell to another, but most are chem-
ical, enabling neurons to excite or inhibit each other by means of neuro-
transmitters that pass from the presynaptic cell to the postsynaptic cell.
Neurotransmitters are not the only chemicals that allow one neuron to
influence another; the next section will discuss hormones and other mol-
ecules that modulate the effects of neurotransmitters. Human brain chem-
istry is fundamentally the same as that found in other vertebrates.

The most important neurotransmitters include: aspartic acid and glu-
tamic acid, (excitatory), gamma-aminobutyric acid and glycine (inhibi-
tory), epinephrine (also a hormone), acetylcholine, dopamine, norepi-
nephrine, serotonin, histamine, neurotensin, and endorphins. Does the
abundance of different neurotransmitters used by the brain matter to men-
tal computation? One might argue that the only computational signifi-
cance is in the excitatory and inhibitory behavior of synaptic connections,
and that the particular chemicals involved in excitation and inhibition are
largely irrelevant to how the brain computes. I propose, however, that the
array of neurotransmitters makes both qualitative and quantitative dif-
ferences to mental processing, affecting both its style and speed.

The computational operation of a neural network depends on three kinds
of properties of the network. The first is the internal processing capability
of the neurons in the network, which may vary depending on how much
the neuron can do with the various inputs coming to it and how complex
its outputs can be. Most models of artificial neural networks used in cog-
nitive science have very simple processing power, enabling them to translate
input activation into output activation. Spiking neural networks have
greater internal processing power in that they can respond differently to
different patterns of spikes coming into them, and they produce different
output patterns of spiking behavior, not just a rate of activation. The dis-
cussion of the computational power of proteins in Section 3 showed that
chemical neurons have still greater internal processing power than those
found in artificial spiking networks, because the chemical reactions that
occur within cells are qualitatively and quantitatively different from the
electrical integration and firing performed by spiking neurons.

The second key property is the topography of the network, which is
the pattern of connectivity that enables one neuron to affect the firing of
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another. In typical artificial neural networks, topography is determined
by the excitatory and inhibitory links that connect neurons, but we shall
see that chemical brains have a greatly enhanced topography. The third
key kind of property is temporal. A neural network is a dynamic system
that evolves over time, and how it evolves is very much affected by the
order and rate of different occurrences in it. For example, artificial neural
networks are sometimes synchronous, with all neurons having their acti-
vations updated at the same time, but it is more biologically natural when
they are asynchronous. Real neurons are asynchronous and depend on
temporal history in the form of the spike patterns that are input to them.
Spiking neural networks thus have temporal properties that are different
from rate-activation networks, although they are no different topograph-
ically from rate-activation networks. Chemical networks differ in all of
these kinds of properties—internal processing, topographical, and tem-
poral—from purely electrical networks. I will now discuss the topographic
and temporal effects of neurotransmitters and neuromodulators.

4.2. Topographic Effects of Neurotransmitter Pathways. Neurotrans-
mitters occur in specific nerve pathways in the brain (Brown 1994, 70). A
pathway consists of connected neurons whose synapses all involve the
transmission of the same chemical. For example, there are specific path-
ways for acetylcholine, dopamine, norepinephrine, and serotonin. Differ-
ent pathways have different functions, for example the integration of
movement by dopamine and the regulation of emotion by serotonin. Dis-
ruptions in these pathways can cause various mental illnesses, for example
Parkinson’s disease resulting from lack of dopamine, and depression re-
sulting from lack of serotonin. Drugs can be used to treat illnesses by
increasing or decreasing the amounts of neurotransmitters, as when MAO
inhibitors are used to treat depression by increasing the availability of
dopamine and serotonin.

The computational significance of neurotransmitter pathways is that
they provide the brain with a kind of organization that is useful for ac-
complishing different functions. If a neuron could be connected to any
other neuron, it would be difficult to orchestrate particular patterns of
neuronal behavior. The brain requires cascades of activity, for example
when perception of a dangerous object such as a snake leads to activation
of fear centers in the amygdala and release of stress hormones. Neuro-
transmitters provide a coarse kind of wiring diagram, organizing general
connections between areas of the brain that need to work together to
produce appropriate reactions to different situations. Of course, the brain
might have evolved with purely electrical pathways, but the fact is that
the different kinds of neurotransmitters have served to establish patterns
of connectivity that are important for its operation. Neurotransmitters
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serve to restrict connectivity within the brain, but different kinds of chem-
ical communication that enhance connectivity are discussed in Section 5.

4.3. Temporal Effects of Neurotransmitters. There are two types of syn-
apse, the relatively rare electric synapse and the more common chemical
synapse in which neurotransmitters are emitted from the vesicles of the
presynaptic cell and bind to the receptors of the postsynaptic cell. The
effects of chemical synapses are electrical, allowing ions to cross the mem-
brane of the postsynaptic cell. But these effects are much slower than in
an electric synapse, in which ions move directly from one neuron to an-
other (Lodish et al. 2000, 943). Heart cells, for example, are electrically
coupled, allowing groups of muscles cells to contract in synchrony. Signals
are transmitted across electric synapses in a few microseconds, without
the delay of .5 milliseconds found in chemical synapses.

Given the greater speed and reliability of electric synapses, it might
seem puzzling why most synapses are chemical. According to Lodish et
al. (2000, 942), chemical synapses have two important transmission ad-
vantages over electric ones. The first is signal amplification, for example
when a single presynaptic neuron causes contraction of multiple muscle
cells. The second is signal computation, in which a single neuron is affected
by signals received at multiple excitatory and inhibitory synapses. “Each
neuron is a tiny computer that averages all the receptor activations and
electric disturbances on its membrane and makes a decision whether to
trigger an action potential.” (Lodish et al. 2000, 943). Thus chemical syn-
apses, even though slower, allow for more flexible kinds of computation.

In chemical synapses, there are two classes of neurotransmitter that
operate at vastly different speeds (Lodish et al. 2000, 939). Fast synapses,
using receptors to which neurotransmitters bind and cause an immediate
opening of ion channels, enable ions to cross the postsynaptic cell mem-
brane in less than 2 milliseconds. In contrast, slow synapses are more
indirect, requiring binding of a neurotransmitter to a receptor that initiates
a chemical reaction that eventually affects ion conductance. Such post-
synaptic responses are slower and longer lasting than those involving fast
synapses, working on a scale of seconds rather than milliseconds.

Particular neurotransmitters can have special temporal properties. One
kind of glutamate receptor, the NMDA receptor, functions as a coinci-
dence detector (Lodish et al. 2000, 947). These receptors only open a chan-
nel if two conditions are met: glutamate must be bound and the membrane
must be partly polarized by previous transmission. Thus the NMDA re-
ceptor makes possible a simple kind of learning. Galarreta and Hestrin
(2001) found that networks of neurons that release gamma-aminobutyric
acid (GABA) spike fast enough to be able to detect synchrony in input
neurons. It used to be thought that each neuron could only release one
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kind of neurotransmitter, but there is evidence that a neuron can release
different transmitters and different amounts and combinations of trans-
mitters at different times (Black 1991, 79). This complexity makes possible
a degree of electrochemical encoding that has more variables than the
activations and spike trains in purely electrical networks.

In sum, the different temporal properties of neurotransmitters enable
them to operate on very different time scales, ranging from microseconds
(electric synapses) to milliseconds (fast chemical synapses) to seconds
(slow chemical synapses). We will see in the next section that even longer
time effects are possible with hormones.

5. Neuromodulators. Brown (1994, 14) provides a useful taxonomy of neu-
roregulators, the chemicals that affect neuronal activity, dividing them into
neurotransmitters and neuromodulators. As just described, neurotrans-
mitters are released by neurons and act on other neurons via synapses.
Neuromodulators, in contrast, can be released by non-neuronal cells as
well as neuronal cells, and they act non-synaptically on both the presyn-
aptic and postsynaptic cell to alter synthesis, storage, release, and uptake
of neurotransmitters. Neuromodulators include hormones, which travel
through the bloodstream, and nonhormone molecules that pass more di-
rectly between cells. The point of this section is to argue that the variety
of neuromodulators used by the brain expands its computational abilities
in ways that help to explain aspects of human thinking. Contrary to most
computational models of neural networks, whether a neuron fires is not
simply a function of its synaptic input. The influence of neuromodulators
affects both the topographical and temporal properties of neural net-
works.

5.1. Topographical Effects of Neuromodulators. Neuromodulators dra-
matically change the causal structure of a neural network. Instead of hav-
ing a kind of local causality, in which whether a neuron fires is determined
only by the neurons that provide synaptic inputs to it, it becomes possible
for neurons and other cells that are even meters away to affect firing. A
neuron in one part of the brain such as the hypothalamus may fire and
release a hormone that travels to a part of the body such as the adrenal
glands, which stimulates the release of other hormones that then travel
back to the brain and influence the firing of different neurons. Complex
feedback loops can result, involving interactions between the neurotrans-
mitter control of hormone release and the hormonal regulation of neu-
rotransmitter release. These feedback loops can also involve the immune
system, because brain cells also have receptors for cytokines, which are
protein messengers produced by immune system cells such as macro-
phages.
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How do hormones affect neuronal firing? The internal processing of a
neuron depends on a host of inputs, including neurotransmitters, hor-
mones, and growth factors (Brown 1994, 200). All of these are first mes-
sengers that activate proteins to produce intracellular signals via second
messengers such as the molecule cAMP, which then activate specific pro-
tein kinases (enzymes) that function as third messengers. The kinases
phosphorylate proteins that act as fourth messengers to stimulate changes
in membrane permeability and protein synthesis in the cell. Such changes
influence the ability of the neuron to spike, and hence affect the rate and
pattern with which it fires. The key point here is that whether a neuron
fires and hence contributes to the computation performed by the neural
network is not simply a function of neurons that provide synaptic inputs,
but can also be affected by a host of other cells that produce hormones.
Hence the topography of the brain is far more complex than is recognized
by purely electrical models in which the inputs to artificial neurons are
just activations and spike trains.

Hormonal chemical effects operate over long distances, but there are
also non-synaptic connections between adjacent neurons. Cell adhesion
molecules not only bind cells together to form tissues, they also carry
signals between cells that can affect their development (Crossin and
Krushel 2000). Song et al. (1999) discovered Neuroligin, a synaptic cell
adhesion molecule that not only enables neurons to establish synaptic
connections with each other, but also allows for direct signaling from the
postsynaptic neuron back to the presynaptic one. Such retrograde signal-
ing is thought to be important for learning. Other molecular mechanisms
for retrograde signaling have been identified. The postsynaptic neuron can
also send chemical signals back to the presynaptic neuron by means of
gases such as nitric oxide and carbon monoxide, or by peptide hormones
(Lodish et al. 2000, 915). Nitric oxide is a small molecule that can easily
diffuse to affect many neurons, greatly expanding the computational to-
pography of neural networks beyond synaptic connections. Koch (1999,
462) conjectures that, because of the spread of nitric oxide: “the unit of
synaptic plasticity might not be individual synapses, as assumed by neural
network learning algorithms, but groups of adjacent synapses, making for
a more robust, albeit less specific learning rule.”

Neuronal firing is also affected by glial cells, which were formally
thought to function only to hold neurons together. There are 10-50 times
more glial cells in the brain than neurons, and glial cells affect both the
formation of connections by nerve cells and their firing. A factor released
by glial cells makes transmitting neurons release their chemical messengers
more readily in response to an electrical signal (Pfrieger and Barres 1997).
Stimulated glial cells release calcium that trigger surrounding glia to re-
lease calcium too, producing a spreading signal (Newman and Zahs 1998).
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The calcium wave releases glutamate from the glial cells, which has a direct
impact on the firing of the neurons in the vicinity.

In sum, there is evidence from the behavior of hormones, nitric oxide,
and glial cells that the topography of brain networks is far more complex
than is captured by electrical models based only on synaptic connections.
Not surprisingly, the operation of non-synaptic chemical messengers also
affects the temporal patterns of neurons.

5.2. Temporal Effects of Neuromodulators. Hormones can affect the
firing rate of neurons (Brown 1994, 166f.). Gonadal hormones increase
the electrical activity of some neurons and inhibit the activity of other
neurons. For example, estrogen can modulate the release of dopamine and
serotonin. Thus hormones can slow down or speed up neuronal firing.

Many neurons secrete neuropeptides such as endorphins and oxytocin.
Unlike classical neurotransmitters, these molecules are released outside
the synaptic zone and can have effects that last for hours or days (Lodish
et al. 2000, 936). Thus the temporal effects of neuropeptides operate on a
very different scale from the much briefer effects of neurotransmitter emis-
sion described in Section 4.2.

Thus a computational system that involves neuromodulators can be
expected to have different temporal behaviors than one with neurotrans-
mitters only, and we already saw in Section 4.2 that different neurotrans-
mitters give rise to different temporal properties. Hence molecules matter
for the temporal behavior of neural networks.

6. Emotional Cognition. My general argument to this point has been that
there are reasons to expect that neurochemistry should matter to mental
computation, but I have not shown any particular kinds of mental com-
putation that are affected. There is little direct evidence that the highest-
level mental computations involved in problem solving are tied to the
influences of specific neurotransmitters and neuromodulators. However,
there is substantial evidence that these neuroregulators are important for
emotions, and there is also evidence that emotions greatly affect problem
solving and learning. I will review these two bodies of evidence and con-
clude that even the most cognitive of mental functions are subject to neu-
rochemical understanding. Chemistry has both positive and negative ef-
fects on emotions and problem solving.

6.1. Emotions and Neurochemistry. Panksepp (1993) provides a concise
review of the neurochemical control of moods and emotions, including
examples of how neurotransmitters are linked to particular emotions. Ad-
minstration of glutamate, the most common excitatory neurotransmitter
in the brain, can precipitate aggressive rage and fear responses. NMDA
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receptor blockage in the amygdala can modulate extinction of fear behav-
iors. The inhibitory neurotransmitter GABA figures in the control of anxi-
ety. Norepinephrine influences sensory arousal and becomes prominent in
high-affect situations such as threat. Dopamine is associated with positive
emotionality, and adenosine is a natural soporific that is blocked by weak
mood enhancers such as caffeine.

Neuroregulators also play prominent roles in specific emotions. Cor-
ticotropin-releasing factor instigates a stress response that has a major
impact on fear and anxiety. Oxytocin enhances maternal behavior as well
as feelings of acceptance and social bonding, and it contributes to sexual
gratification. Arginine vasopressin is under testosterone control and can
provoke male aggression. Estrogen receptors in the brain are involved in
female sexual behavior, aggression, and emotionality (Brown 1994, 154).
Many other peptides also affect emotional behavior.

Additional evidence concerning neurochemical influences on mood and
emotion comes from the medical effectiveness of drugs that target partic-
ular neurotransmitters (Panksepp 1998, 117). Depression can be treated
both by drugs like Prozac that prolong the synaptic availability of neu-
rotransmitters such as serotonin and dopamine and by drugs that inhibit
the enzyme monoamine oxidase (MAOQO) that normally helps degrade neu-
rotransmitters following release. Antipsychotic drugs used to treat schizo-
phrenia generally dampen dopamine activity. Most antianxiety agents in-
teract with a specific receptor that can facilitate GABA activity, whereas
newer drugs reduce anxiety by interacting with serotonin receptors. A new
generation of psychiatric medicines is being developed to deal with prob-
lems such as bulimia that may arise from imbalances in particular neu-
ropeptides.

There is thus abundant reason to believe that understanding of human
emotions will require attention to the effects of neuroregulators on think-
ing. It follows immediately that neurochemistry is relevant to understand-
ing the nature of emotional consciousness. Feelings of happiness, sadness,
fear, anger, disgust and so on emerge from brain activity by mechanisms
not yet understood, but the diverse ways in which neurochemicals influ-
ence emotion suggest that it is unlikely that emotional consciousness
emerges only from the electrical activities of the brain. I return to this
topic in the discussion of artificial intelligence in Section 7.

6.2. Cognition. It might be argued that, even though chemical expla-
nations are relevant to emotion, they have no bearing on central cognitive
processes such as problem solving, learning, and decision making. How-
ever, there is increasing evidence in psychology and neuroscience that cog-
nition and emotion are not separate systems and that emotion is an in-
trinsic part of human cognition (Dalgleish and Power 1999). Reviewing
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this evidence would take a book in itself, but here I will only report a few
salient examples of the cognitive impact of emotions.

Isen (1993) reviews an extensive literature on the impact of positive
affect on decision making. The presence of positive feelings can cue posi-
tive materials in memory, making access to such thoughts easier. Positive
but not negative emotion provides retrieval cues for situations relevant to
a current problem. Positive affect also promotes creativity in problem solv-
ing and negotiation, and efficiency and thoroughness in decision making.
People in whom positive affect have been induced are able to categorize
material more flexibly and to see more similarities among items. Kunda
(1999, 248) reports that mood manipulations by small gifts or pleasant
music have been shown to influence a host of judgments, including as-
sessment of one’s own competence, one’s general satisfaction of life, and
evaluations of the quality of political leaders. Affect may also influence
our cognitive strategies: people in a bad mood are more likely to use elab-
orate, systematic processing strategies. Happiness has been found to in-
crease our reliance on social stereotypes, whereas sad people have reduced
reliance on negative stereotypes. Thus basic cognitive functions such as
categorization, problem solving and decision making are under emotional
influence.

Ashby, Isen, and Turken (1999) have developed a neuropsychological
theory of how positive affect influences cognition. They propose that posi-
tive affect is associated with increased brain dopamine levels that improve
cognitive flexibility. Many readers of this article are familiar with the en-
hancement in problem solving ability brought about by caffeine, which
blocks the inhibitory neurotransmitter adenosine (Brown 1996). In con-
trast, alcohol can disrupt mental functioning by inhibiting receptors for
the excitatory neurotransmitter glutamate, including NMDA receptors
important for learning. (More pleasantly, alcohol reduces anxiety by bind-
ing to GABA receptors and increasing their inhibitory function, while
inducing euphoria through increased dopamine levels in the brain’s reward
centers and released endorphins.)

It might be thought that decision making would improve if emotions
were removed from decisions, but the neurophysiological research of Da-
masio (1994) and his colleagues suggests that this is emphatically not the
case. People who have brain damage that severs links between the most
cognitive areas of the brain in the neocortex and the most emotionally
important areas in the amygdala are very ineffective decision makers, even
though their verbal and mathematical abilities are unaffected. Their prob-
lem is that they have lost the emotion-driven ability to make decisions on
the basis of what really matters to them. Bechara et al. (1997) found that
this disability also made it difficult for patients to learn a card playing
task in which normal subjects unconsciously learned strategies that en-
abled them to avoid bad outcomes.
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This neurological research on the role of emotions in decision making
fits well with recent psychological theories that find deficiencies in purely
cognitive accounts of decision making. Loewenstein, Weber, Hsee, and
Welch (2001) show that many psychological phenomena involving judg-
ment and decision making under uncertainty can be accounted for by
understanding peoples estimates of risk as inherently emotional. Similarly,
Finucane et al. (2000) propose that human decisions are heavily affected
by what they call the “affect heuristic.” Legal and scientific thinking are
also inherently emotional (Thagard 2002, forthcoming).

I have mentioned only a small part of the evidence that challenges the
traditional psychological division between cognition and emotion and the
ancient philosophical distinction between reason and passion. But it suf-
fices for the purpose at hand, to show that the demonstrable relevance of
neurochemistry to emotions carries over to cognition in general. If human
cognition is mental computation, it is a kind of computation determined
by the chemical as well as the electrical aspects of the brain. This conclu-
sion has important implications for the prospects of developing intelli-
gence in non-human computers.

7. Artificial Intelligence. Kurzweil (1999) and Moravec (1998) have pre-
dicted that artificial intelligence will be able to match human intelligence
within a few decades. Their prediction is based on the exponential increase
in processing speed of computer chips, which continues to double every
12-18 months as it has for decades. Kurzweil estimates the computing
speed of the human brain to be around twenty million billion calculations
per second, based on 100 billion neurons each with a thousand connections
and the slow firing rate of 200 calculations per second. Assuming contin-
ued exponential increase in chip speed, digital computers will reach the
twenty million billion calculations (on the magnitude of 10'%) per second
mark around the year 2020.

However, the molecular chemistry of the brain suggests that this esti-
mate of its computational power may be very misleading, both quantita-
tively and qualitatively. If we count the number of processors in the brain
as not just the number of neurons in the brain, but the number of proteins
in the brain, we get a figure of around a billion times 100 billion, or 10"7.
Even if it is not legitimate to count each protein as a processor all by itself,
it is still evident from the discussion in Section 3 that the number of com-
putational elements in the brain is more than the 10" or 10'2 neurons.
Moreover, the discussion of hormones and other neuroregulators dis-
cussed in Section 5 shows that the number of computationally relevant
causal connections is far greater than the thousand or so synaptic con-
nections per neuron. I do not know how to estimate the number of neurons
with hormonal receptors that can be influenced by a single neuron that
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secretes hormones or that activates glands which secrete hormones, but
the number must be huge. If it is a million, and if every brain protein is
viewed as a mini-processor, then the computational speed of the brain is
on the order of 10> calculations per second, far larger than the 10'° cal-
culations per second that Kurzweil expects to be available by 2020, al-
though less than where he expects computers to be by 2060. Thus quan-
titatively it appears that digital computers are much farther away from
reaching the raw computational power of the human brain than Kurzweil
and Moravec estimate.

Moreover, intelligence is not merely a matter of raw computational
power, but requires that the computer have a sufficiently powerful pro-
gram to produce the desired task. My Macintosh G4 laptop computer can
calculate 2199 in g couple of seconds, the same amount of time in which
I can only calculate 2°, but the computer lacks the programming to be
able to understand language and solve complex problems. Kurzweil and
Moravec are aware that it is a daunting task to write the billions or trillions
of lines of software that would be needed to enable the superfast com-
puters of the future to approach human cognitive capabilities, but they
blithely assume that evolutionary algorithms will allow computers to de-
velop their own intelligent software. Evolutionary computation, which
uses algorithms modeled in part on human genetics, is indeed a powerful
means of developing new software (Koza 1992), but it is currently limited
by the need for humans to provide the evolving programs with a criterion
of fitness that the genetic algorithms serve to maximize. In humans, the
evaluation of different states is provided by emotions, which direct us to
what matters for our learning and problem solving. Computers currently
lack such intrinsic, biologically-provided motivation, and so can be ex-
pected to have difficulties directing their problem solving in non-routine
directions.

Perhaps software will be developed that does for computers what emo-
tions do for us, but current computational research on emotions is very
limited compared to the complexity of the human emotional system based
on numerous neurotransmitters and neuromodulators. There is a current
resurgence in Al of interest in emotion, which is however treated by re-
searchers as a symbolic or electrical rather than a chemical phenomenon.
The complexity of human emotions, based on looping interactions among
neural, hormonal, and immune systems, may be too complex for people
to figure out how to program and also too complex for a program created
by humans to evolve.

This does not mean that computers of great intelligence in special areas
will not be developed. It may be quantitatively and qualitatively difficult
for AI to duplicate the human brain, but intelligent computers may be
developed by other means, just as IBM managed to build the world’s best
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chess player by combining clever software with extraordinarily fast com-
puter chips. But we should not expect a computer developed in this way
to have all the mental capacities of humans, and we certainly should not
expect it to have anything like human consciousness, which Section 6.1
suggested is intrinsically tied to human emotions and hence to our peculiar
brain chemistry.

8. Conclusion. My arguments that neurochemistry matters to mental com-
putation are not meant to show that computational models of the mind
have to be at the molecular level. As I stated at the end of Section 2,
models are like maps in that various levels of detail are useful for different
purposes. Symbolic models of high-level inference and neural network
models with and without spiking neurons have proven very useful in ex-
plaining many facets of cognition, and I have no doubt that they will
continue to be useful. Cognitive science benefits from a combination of
many different fields and methodologies, with different researchers at-
tacking the problem of understanding mind and intelligence at different
levels.

Without recommending abandonment of the techniques of computa-
tional modeling that have served cognitive science well, it is nevertheless
evident that there are new possibilities for enhancing understanding of
mind by working more at the molecular level. Consider, for example, the
computational study of emergent properties of chemical pathways con-
ducted by Bhalla and Iyengar (1999), including integration of signals
across multiple time scales and self-sustaining feedback loops. It is possible
that computational modeling of brain activity at the molecular level will
discover additional emergent properties that are important for under-
standing some of the most currently intractable problems in cognitive sci-
ence, such as the origins of emotional consciousness. Hence without aban-
doning traditional concerns and methods, it may be time for psychology
and the philosophy of mind to become, like current biology and medicine,
molecular.
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