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Abstract

Biomedical information extraction is
becoming an increasingly important
application for Computational Lin-
guistics research. We outline an
approach to extracting detailed in-
formation about protein interactions
that uses a discourse-based method of
analysis to provide a means of rank-
ing the biological validity of such in-
teractions. Specifically, we use lexi-
cal chaining—strings of semantically
related words—as an indicator of the
validity of the protein interactions ap-
pearing in the same textual context.

1 Introduction
Each living cell is rich in proteins that continu-
ously interact with each other. Knowledge about the
identities and functions of interacting proteins con-
tributes significantly to the understanding of biolog-
ical processes by providing insight into the roles of
important genes, elucidating relevant pathways, and
facilitating the identification of potential drug targets
for use in developing novel therapies.

A large volume of protein-protein interactions has
been identified, and information about such interac-
tions is now readily available in online databases
such as BIND (Bader et al., 2001). However,
the information stored in current databases does
not allow us to rank the biological validity of the
interactions—it may be the case that interactions oc-
curring under laboratory conditions do not actually

occur in the living cell. A researcher trying to es-
tablish the quality of the interactions identified in a
database could read the details of the experiments
in each related scientific article, but this is labouri-
ous and time-consuming. If the number of relevant
papers is high, it will be difficult or even impossi-
ble for a researcher to manually process all the arti-
cles to assess the value of the interactions. For ex-
ample, a text query in BIND for interactions of the
single protein Cdc42 will retrieve 512 records, far
too many to be easily read and analyzed by man-
ual methods—there is a clear need for an automated
information extraction system to assist researchers
in analyzing the online literature to better judge the
quality of biomolecular interactions.

1.1 Natural Language Processing and
information extraction

Natural Language Processing (NLP) techniques are
now widely used in biomedical information extrac-
tion (IE). The general approach to using natural
language methods in automated information extrac-
tion involves a detailed analysis of basic grammat-
ical features (e.g., identifying each word’s part-of-
speech) and then a shallow analysis of deeper syn-
tactic structure using targetted grammatical rules to
identify simple syntactic patterns (‘templates’) or
basic grammatical units (e.g., noun phrases, verb
phrases) within the sentence.

Representative approaches to extracting informa-
tion from biomedical texts include: using the fre-
quency of “discriminating words” to score paper
abstracts to determine whether the paper is about
protein interactions (Marcotte et al., 2001); simple-



template–based parsing of sentences to build net-
works of protein interactions (Blaschke et al., 1999);
and a general-purpose information-extraction en-
gine using both symbolic and statistical Computa-
tional Linguistic techniques to build a database of
protein interactions (Thomas et al., 2000). How-
ever, these approaches are inherently limited: they
currently target only paper abstracts, they deal with
only a single sentence at a time, and they use sim-
plified methods of linguistic analysis. As a conse-
quence, these current approaches to biomedical in-
formation extraction miss a great deal of the detailed
information on protein interactions that is contained
in the text.

In this paper, we propose a method for extract-
ing information on protein-protein interactions from
online biological literature that aims to obtain more-
detailed knowledge than previous systems and that
uses both more-sophisticated Computational Lin-
guistic methods and computationally tractable algo-
rithms capable of handling large corpora. We base
our method on the inherent biological characteristic
of protein-protein relationships, namely that inter-
acting proteins will tend to have similar biological
functions:

. . . Although proteins from differ-
ent groups of biological functions
can still interact with each other, it
has been shown that the degree to
which interacting proteins are anno-
tated with the same functional cate-
gory is a measure of quality for the
predicted interactions (von Mering et
al. 2002).

We may reasonably expect then to find biological
terms in the context surrounding a protein interac-
tion that indicate the common functions of these pro-
teins. If we can determine such terms by an auto-
mated method of linguistic analysis, we would have
an additional means of discovering evidence in the
literature that the interaction is indeed biologically
valid.

The idea of using semantically related strings of
words to determine the topic structure of text is
known as lexical chaining (Morris and Hirst, 1991),
a method that fulfils our dual criteria of being both
discourse-based and computationally efficient. We

propose to use lexical chains to retrieve additional
information on protein interactions by finding the
biological terms in the passage surrounding an in-
teraction that form the theme structure of the text.
Our method requires readily available linguistic and
biomedical resources: an online lexical thesaurus
(e.g., WordNet; (Fellbaum et al., 1998)) and shallow
syntactic parsers, as well as biological and medical
ontologies (e.g., Unified Medical Language System,
Gene Ontology Project) which provide semantic and
conceptual knowledge. By constructing the lexical
chains related to protein interactions, we will not
only extract additional important information about
interactions from the literature, but we hypothesize
that we will also be able to use the strength of the
chains to rank the apparent quality of the interac-
tions.

2 Background and Related Work

2.1 What is Lexical Chaining?

The notion of lexical chaining was first introduced
by Morris and Hirst (Morris and Hirst, 1991), and
derives from the concept of textual cohesion. The
linguistic study of textual cohesion shows that a
text or discourse is not just a set of sentences, each
on some random topic; rather, the sentences and
phrases of any sensible text tend to ‘stick together’
by various means to form a unified whole. There
are a number of forms of textual cohesion, such as
grammatical cohesion (reference, substitution, ellip-
sis, conjunction) and lexical cohesion (i.e., semanti-
cally related words). A lexical chain may be defined
as a sequence of related words in the text, span-
ning a topical unit of the text, be it short (adjacent
words or sentences) or long (entire text). In general,
a document will contain many lexical chains, each
of which forms a portion of the cohesive structure of
the document.

Lexical chains are important for computational
text understanding not only because they provide a
context for resolving word ambiguity, but also be-
cause they indicate the discourse structure of the
text. Since lexical chaining was introduced in 1991,
it has been successfully used in a number of Infor-
mation Retrieval and Natural Language Processing
applications, such as term weighting, malapropism
detection, hypertext generation, and text summariza-



tion. In this paper, we argue that lexical chains can
be used in detailed information extraction from bio-
logical literature, specifically, the assessment of the
biological validity of protein-protein interactions.

2.2 How to determine lexical chains
Generally speaking, lexical chains can be computed
by grouping sets of words that are semantically re-
lated (words that have relationships such as iden-
tities, synonyms, and hypernyms/hyponynms). In
terms of actual computing procedures, most lexical-
chaining algorithms can be summarized by the fol-
lowing three steps:

1. Select a set of candidate words (i.e., all noun
instances).

2. For each candidate word, find an appropri-
ate chain relying on a relatedness criterion
among members of the chains.

3. If such a chain is found, insert the word in
the chain; otherwise a new chain is created.

The difficult, and computationally costly, part
of this process is that each candidate word must
be assigned to exactly one lexical chain, and the
words must be grouped in such an optimal way that
these groupings create the longest/strongest lexical
chains. In our research, we will adapt the lexical-
chaining algorithm developed by Silber and Mc-
Coy (Silber and McCoy, 2002). Their linear-time
algorithm was based on the complete method im-
plemented by Barzilay and Elhadad (Barzilay and
Elhadad, 1997) that runs in exponential time. Sil-
ber and McCoy’s method uses WordNet (Miller
et al., 1990; Fellbaum et al., 1998), an online
lexical database as the knowledge source for the
lexical semantic relationships used in constructing
the lexical chains. In WordNet, lexical concepts
are organized according to various semantic rela-
tions. Words (nouns, verbs, adjectives, and adverbs)
are each organized into ‘synonym sets’, known as
synsets, each of which represents the lexical con-
cept underlying a group of words that are synonymic
or near-synonymic in a given context. Synsets
can be related by various lexical semantic relations:
synonymy, antonymy, hyponymy/hypernymy (sub-
class/superclass, also known as the IsA relation), and

meronymy (also known as holonymy, representing
various types of part-whole relationships).

3 A Lexical Chaining Algorithm for
Ranking Protein Interactions

3.1 The algorithm
Our approach relies on a WordNet-like concept tax-
onomy as the basis for automated discourse analysis
using lexical chaining to extract information about
protein-protein interactions in biomedical literature.
Specifically, we adapt two existing algorithms for
lexical chaining and information extraction as the
basis of our method for analyzing biomedical texts
related to protein interactions.

The first algorithm is Silber and McCoy’s lex-
ical chainer; the second is the general algorithm
currently used in biomedical information extrac-
tion (e.g., (Thomas et al., 2000; Pustejovsky et al.,
2002)). Following the style of Thomas et al. and
Pustejovsky et al., the initial stages of our algorithm
use similar methods of shallow syntactic analysis
in the form of tokenization, part-of-speech tagging,
and recognition of phrasal units by cascaded finite-
state machines. Simple grammatical ‘templates’ of
protein-protein interactions are then constructed us-
ing statistical pattern-matching techniques. A typi-
cal template would be: a noun phrase, followed by
a verb, a particle, then another noun phrase, as in A
interacts with/binds to/associates with B ((Thomas
et al., 2000), p. 6).

We then integrate Silber and McCoy’s lexical
chainer with this parsing framework to obtain strings
(the ‘chains’) of semantically related words which
indicate the topic structure of the passage of text sur-
rounding a protein interaction. To do this, we mod-
ify the original lexical-chaining algorithm to build
chains that are composed of biologically significant
terms, specifically those related to protein functions.
The resulting algorithm is shown in Figure 1.

3.2 Scoring lexical chains using Hirst and
St.-Onge’s algorithm

In Silber and McCoy’s algorithm, a critical compo-
nent involves determining the relatedness of words
making up a lexical chain. Initially, a noun is put
into a ‘metachain’ if it is in some way related to the
sense with which the metachain is indexed. Subse-



• Preprocessing:

1. Tokenize input text
2. Tag each token with appropriate part-of-speech

• Step 1: Find protein-interaction templates
for each sentence

1. Group sequences of terms into phrases (e.g.,
noun phrase, verb phrase) using cascaded finite
state machines

2. Determine phrases referring to protein entities or
interaction events using pattern-matching tech-
niques

3. Link coreferring phrases (phrases that refer to
same protein)

4. Construct protein-interaction templates

• Step 2: Find protein-interaction lexical chains
for each paragraph
for context of current protein-interaction template

– Step 2a
for each biological-term instance
for each sense of the biological term

Compute all scored metachains
– Step 2b
for each biological-term instance
for each metachain to which the term belongs

Keep word instance in the metachain
to which it contributes most

Update the scores of each other metachain

• Step 3: Compute rankings of protein interactions
according to strength of their lexical chains

Figure 1: A lexical chaining algorithm for protein
interaction texts

quently, the degree to which the word contributes to
the metachain must be measured in order to decide
which metachains will be kept. In order to do this,
we need a means of measuring the semantic related-
ness of words.

There are various WordNet-based word similar-
ity measurements (e.g., (Hirst and St.-Onge, 1997;
Jiang and Conrath, 1997; Banerjee and Pedersen,
2002)). In this paper we adopt Hirst and St.-
Onge’s (Hirst and St.-Onge, 1997) measure because
it is a simple and effective method easily used with
a manual form of corpus analysis. Hirst and St.-
Onge adapted Morris and Hirst’s (Morris and Hirst,
1991) semantic distance algorithm, which used Ro-
get’s Thesaurus, for use with WordNet. Their
method views semantic relationships between words
in terms of a graph, and correlates semantic relat-

edness between words with the nature of the corre-
sponding path between concepts in the graph. Se-
mantic relatedness is then determined based on the
path shape and distance between concepts using the
relations connecting them in the WordNet taxon-
omy.

The Hirst and St.-Onge measure classifies Word-
Net relations as having direction (upward, down-
ward, or horizontal), and then establishes the relat-
edness between two concepts A and B by finding
a path that is neither too long nor that changes di-
rection too often. Three kinds of relations are de-
fined: extra-strong (between a word and its repe-
tition), strong (between two words connected by a
WordNet relation), and medium-strong (when the
link between the synsets of the words is longer than
one and satisfies certain restrictions).

In Hirst and St.-Onge’s scheme, the strength of
a lexical chain is based both on its length and the
types of relationships among its members. Extra-
strong relations have the highest weight, next in
weight are strong relations, and lowest are medium-
strong relations. Unlike extra-strong and strong rela-
tions, medium-strong relations have varied weights
according to the following formula ((Hirst and St.-
Onge, 1997), p. 308):
weight = C – path length – k ∗ number of changes

of direction (where C and k are constants1.)
The overall strength (‘score’) of a lexical chain

may then be taken to be the sum of weights assigned
to each pair of semantic relations in the chain.

4 Experiment: Manual Ranking of a
Sample Corpus

4.1 The corpus

We applied our lexical-chaining algorithm for pro-
tein interaction texts and method for scoring lexi-
cal chains in an initial manual study. We selected
15 articles focussing on the identification of protein-
protein interactions in yeast and analyzed these by
hand, first to determine the total number and na-
ture of lexical chains in the contexts surrounding the

1
C has value 8 and k has value 1 (Graeme Hirst, personal

communication). In our examples, we set the weight of a strong
relation to be 7 (i.e., assuming a path length of one and no
changes of direction). However, we set an extra-strong relation
to have a weight of 10, to reflect the special status of repetition.



mention of protein interactions, then to test our scor-
ing method on a sampling of the chains. In choos-
ing these articles, we aimed to represent a variety
of the research techniques used in studying protein-
protein interactions. In this way, we hoped to find a
good sampling of the kinds of biological terms likely
to occur in protein-interaction contexts and which
would ultimately be included in our protein-related
version of WordNet.

4.2 Constructing a protein-related extension of
WordNet

We followed our algorithm as given in Figure 1 in
analyzing by hand the lexical chains in the contexts
surrounding protein-protein interactions in our sam-
ple corpus. By “context”, we mean a passage of
text within a single paragraph that ‘talks about’ a
particular protein-protein interaction. In an auto-
mated analysis, we would have to rely primarily on
overt discourse cues such as coreferential expres-
sions, rhetorical markers, and lexical meanings to
determine the topic structure of a text. In a manual
study, we used such cues but also used a deeper un-
derstanding of the semantic content of the technical
material. At this stage, as our primary goal was to
collect and classify information on the regularities in
biological terminology that appear in protein-protein
interaction contexts, it seemed sound methodology
to rely on our own human natural language process-
ing ability; in further work, when we plan an analy-
sis of a much larger corpus, we will adhere to the
limitations inherent in automated processing, i.e.,
the necessarily partial linguistic analysis provided
by syntactic templates and cascaded finite state ma-
chines.

We modelled the basic structure of our concept
taxonomy for biological terms relevant to protein
interactions on the existing concept structure in
WordNet. For example, in WordNet, the concept
assembly has in its synset the terms construction
and building, while its superclasses comprise the
more-general concepts construction, building and
the most-generic concept activity. We based our tax-
onomy on the topmost concept biological-activity
then created three hypernyms of this generic concept
based on the primary activities involving the cell:
cell-death, cell-maintenance, and cell-development.
the concept cell-maintenance has as its synset {cell-

construction, cell-building} and is then specialized
further to cell-assembly. From these primary con-
cepts, we built up the hierarchical structure by se-
lecting biologically significant concepts in the con-
texts surrounding protein interactions and adding
them into the taxonomy based on relations involving
synonymy, antonymy, and hypernymy/holonymy.2

4.3 Enumerating lexical chains
Using our concept taxonomy, we constructed lexical
chains for a sample corpus of protein-interaction ar-
ticles using a manual version of our algorithm. The
main difference between the formal algorithm and
our manual analysis is that we counted protein inter-
actions which could be easily recognized by a hu-
man reader but that might be beyond the capability
of an automated system relying on a template-based
method for recognizing interactions. The articles we
analyzed were all concerned with protein interac-
tions in yeast and covered a range of the experimen-
tal techniques used to detect protein interactions. In
order to keep our sample corpus size manageable yet
still obtain a good number of protein interactions,
we focussed on articles that were specifically about
finding novel interactions, rather than just detailed
studies of specific interactions.

For each article, we recorded the number of pro-
tein interactions in each of the following categories,
based on the number and nature of their lexical
chains (biological terms in the examples below are
shown in boldface):

1. Bare mention of a protein interaction with no
additional biologically related terms.

(1) For example, two proteins of unknown
function, YGR010W and YLR328W
(77% identical), were observed to
interact with each other. ((Uetz et al.,
2000), p. 625)

2. Single-term occurrence of a biological term
in a protein-interaction context.

2Because of the specialized nature of our lexical-chaining
analysis, we adapted the meanings of the classical lexical se-
mantic relations to be more tuned to our needs. Synonymy be-
tween terms, rather than being a strict meaning relation based
on truth-condition–preserving substitution, is more usefully in-
terpreted as a relation between terms having a close similarity
in biological function. So, for example, the concepts of defect,
mutant, and mutation will all be in the same synset.



cell-death cell-maintenance/
cell-construction/
cell-building

n

  

Biological-activity /Process

 synthetic lethal
 mutation/

   mutant/

RNA-splicing

 cell-assembly/cell-organization

biological-pathway

degradation-pathway

secretory-pathway

 actin-assembly

 septin-organization

 autophagy
 endocytosis

 exocytosis

 telomere-maintenance

 telomere-length-regulation

 cytokinesis

 septum-formation

 cell-division/ nuclear-division

 biological-synthesis

 protein-synthesis

cell-synthesis
   DNA-synthesis

 DNA-repair

Glossary:

= hyponymy
= antonymy

/    = members of synset

cell-development/cell-growth/growth

/Biological-process

 cell-growth-control/cell-cycle-control/
 

   defect/
  cell-cycle-regulation

Figure 2: A portion of a WordNet-like concept taxonomy for protein-related terms

(2) A two-hybrid interaction between Cla4
and Msb2 suggests that Msb2 is part of
the Cdc42 regulatory pathway. ((Drees
et al., 2001), p. 558)

3. Single-theme lexical chain in which all the
terms are semantically related to one another.

(3) We found that Msb2 interacts with
Bni4, a protein that targets chitin depo-
sition to sites of polarized growth by
linking chitin synthase to septins (De-
Marini et al., 1997). Msb2 might co-
ordinate cell wall growth with other
Cdc42-regulated processes. ((Drees
et al., 2001), pp. 558–559)

4. Multiple-theme lexical chains in which each
chain forms a distinct string of semantically
related words.3 (in the example below, the

3We accepted examples in this category in which one chain
was a ‘null chain’ (i.e., a single term) as long as there was at
least one other ‘real chain’ of two or more terms on a distinctly
different theme.

different-themed lexical chains are shown in
bold and italic.)

(4) In the present work we show that the N-
terminal region comprising amino acids
1–252 of Cdc13p interacts with Pol1p,
Sir4p, Zds2p and Imp4p. Moreover,
CDC13-deleted yeast cells expressing
Cdc13p lacking the N-terminal 1–252
amino acids region or Cdc13p with
point mutations in this region caused
defects in progressive cell growth and
in cell cycle control. These cells also
have defects in telomere length reg-
ulation. Thus, we conclude that the
N-terminal region of Cdc13p is in-
volved in telomere maintenance, telom-
ere length regulation and cell growth
control through its interaction with its
binding proteins. ((Hsu et al., 2004),
p. 512)

In addition, we recorded examples of protein inter-
actions that were hedged (i.e., the authors expressed



uncertainty about the validity of the interaction),
negative (i.e., of the form protein A does not interact
with protein B), and too difficult for the lay reader to
analyze. The results of our enumeration are shown
in Table 14. As may be observed in these results,
there was a wide range of distribution across the ar-
ticles in the types of protein interactions they con-
tained. The bulk of the protein-interaction instances
were ‘bare mentions’, i.e., simply stated, as might be
expected from the reporting style of most of these
articles. Many of the articles did however include
explanations about the nature of the protein interac-
tion, and it is these descriptive passages which were
picked up as single-theme and multiple-theme lexi-
cal chains.

4.4 Sample rankings of lexical chains
We propose that one way to assess the biological va-
lidity of a protein-protein interaction mentioned in a
scientific article is to use the strength of the lexical
chains in the surrounding context as a measure of
the quality of the interaction. Hirst and St.-Onge’s
scoring algorithm gives us one such measure. We
applied this algorithm to the sample passages in (1)
through (4) to arrive at the following results5 (scor-
ings for (3) and (4) are depicted in Figure 3):

Both passages (1) and (2) contain no lexical
chains so receive scores of zero. This does not
necessarily mean that the protein interactions they
describe are not valid; rather, it indicates that the
supporting evidence for the quality of the interac-
tion is weak (at least insofar as this fragment of
the article is concerned). Example (3) contains a
strong singly-themed lexical chain, as evidenced by
its score (17), and this serves to indicate a corre-
spondingly strong biological quality of the interac-
tion. The last passage, example (4), contains two
strong lexical chains, with a consequent very high
overall score (50)6 indicating that the protein inter-

4The articles are listed in the order in which they were read.
5The weights we assign to medium-strong relations are de-

rived from Hirst and St.-Onge’s formula. For example, in ex-
ample (3), the medium-strong relation in the lexical chain (i.e.,
{growth, processes}) is computed as follows:

According to our concept taxonomy in Figure 2, the path be-
tween growth and process is a single-link relation in the upward
direction (hypernymy), therefore:

weight = (8 – path length – number of changes of direction)
= (8 – 1 – 0) = 7

6In fact, the score for this example would be increased if we

actions described herein have strongly supportive bi-
ological evidence.

5 Discussion and Future Work

We have outlined a method for biomedical informa-
tion extraction that makes use of the lexical-chaining
structure in scientific articles to determine strings
of biologically related words in protein-interaction
contexts. Our hypothesis is that lexical chains may
provide evidence for the biological significance of
the protein interactions occurring in the same con-
text. Our immediate task is to carry out a large-scale
corpus study to investigate the nature and frequency
of lexical chains appearing in protein-interaction ar-
ticles. In addition, we are investigating whether
existing biological ontologies might be adapted as
the basis for the concept taxonomy used with our
lexical-chaining algorithm.
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