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Abstract
Biomedical information extraction is becoming an in-
creasingly important focus in Computational Linguis-
tics research. To perform more semantics-based in-
formation extraction, we require specialized domain
models, but creating such models can be very diffi-
cult and time-consuming. We have developed a hy-
brid methodology for constructing a domain-specific
ontology, “PPIWordNet”, which integrates key con-
cepts about protein-protein interactions with the Gene
Ontology. In addition, we present a method for using
our PPIWordNet ontology in discourse-based informa-
tion extraction to analyze full-text articles on protein in-
teractions. Our discourse-analysis approach uses “lex-
ical chaining” to extract strings of semantically related
words that represent the topic structure of the text. We
show that the domain-specific PPIWordNet ontology
significantly improves the performance of the lexical-
chaining analysis. As well, the topic structure as repre-
sented by the lexical chains contains important informa-
tion about protein interactions which we propose may
be useful in evaluating the biological validity of these
interactions.

Introduction
Natural Language Processing (NLP) techniques are now
widely used in biomedical information extraction (IE). Cur-
rent approaches typically involve identification of simple
syntactic features (e.g., parts-of-speech) together with some
form of ‘shallow’ parsing to identify basic syntactic patterns
(‘templates’) or elemental grammatical ‘chunks’ (e.g., noun
phrases, verb phrases) within the sentence (e.g., (Thomas
et al., 2000) (Pustejovsky and Castaño, 2002)). Potentially a
great deal of additional knowledge could be extracted from
scientific articles if we were able to derive detailed linguis-
tic information such as lexical meanings, syntactic structure,
semantic content, and discourse structure. However, to per-
form deeper, more semantics-based, information extraction,
we require specialized domain models, but creating such
models can be very difficult and time-consuming.

Our subject domain is the automated detection and
analysis of protein-protein interactions in full-text articles.
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Knowledge about the identities and functions of interact-
ing proteins contributes significantly to the understanding
of biological processes. Our particular interest is the vali-
dation of protein-protein interactions—although a large vol-
ume of protein-protein interactions has been identified using
biomedical information extraction methods, and this infor-
mation is now readily available in online databases such as
BIND (Bader et al., 2001), it may be the case that some
interactions mined from the literature are not biologically
valid, i.e., do not actually occur in the living cell.

We have developed a hybrid methodology for construct-
ing a domain-specific ontology, “PPIWordNet”, which inte-
grates key concepts about protein-protein interactions with
the Gene Ontology (Gene Ontology Consortium, 2004). In
addition, we present a method for using our PPIWordNet
ontology in discourse-based information extraction to ana-
lyze full-text articles on protein interactions. Our discourse-
analysis approach uses “lexical chaining ” (Morris and Hirst,
1991) to extract strings of semantically related words that
represent the topic structure of the text. We show that
the PPIWordNet ontology significantly improves the perfor-
mance of the lexical-chaining analysis. As well, the topic
structure as represented by the lexical chains contains infor-
mation about protein interactions which we suggest may be
useful in evaluating the validity of these interactions.

Background
Our project (First Author and Second Author, 2005) (First
Author, 2007) is developing Natural Language systems
for extracting information about protein-protein interac-
tions from online biomedical literature using both discourse-
based and Machine Learning methods. Our specific aim is to
extract meaningful information that can help to evaluate the
biological validity of protein-protein interactions contained
in online databases. We base our approach on the inher-
ent biological characteristic of protein-protein relationships,
namely that interacting proteins will tend to have similar bi-
ological functions:

. . . Although proteins from different groups of bio-
logical functions can still interact with each other,
it has been shown that the degree to which inter-
acting proteins are annotated with the same func-
tional category is a measure of quality for the pre-
dicted interactions (von Mering et al. 2002).



We may reasonably expect then to find biological terms in
the context surrounding a protein interaction that indicate
the common functions of these proteins. Our methodol-
ogy is to determine such terms by an automated method of
discourse analysis—“lexical chaining”—to provide an addi-
tional means of discovering evidence in the literature that an
interaction is indeed biologically valid.

The notion of lexical chaining was first introduced by
Morris and Hirst (1991), and derives from the concept of
textual cohesion. There are a number of forms of textual
cohesion, including grammatical cohesion (reference, sub-
stitution, ellipsis, conjunction) and lexical cohesion (i.e., se-
mantically related words). As an illustration, the following
passage shows several types of lexical cohesion.

(1) John has a Jaguar.

(2) He loves the car.

(3) John works in the garage taking care of his Jaguar.

In this passage, the repetition of the word Jaguar in sen-
tences (1) and (3) represents a simple form of lexical cohe-
sion; Jaguar and car form a part-whole semantic relation-
ship; car and garage have a nonsystematic semantic rela-
tionship. Lexical cohesion occurs between two individual
terms, but may lead to sequences of related words.

A lexical chain may be defined as a sequence of related
words in the text, spanning a topical unit of the text which
may be of varying length, either short (adjacent words or
sentences) or long (entire text). In the passage above, a lex-
ical chain would be {Jaguar, car, garage, Jaguar}. In gen-
eral, a document will contain many lexical chains, each of
which forms a portion of the cohesive discourse structure of
the document.

In our research, we are using Enss’ (2006) lexical-
chaining algorithm, a modification of Silber and McCoy’s
(2002) linear-time algorithm. Silber and McCoy’s method
uses WordNet (Fellbaum, 1998), an online lexical database,
as the knowledge source for the lexical semantic relation-
ships used in constructing the lexical chains. In WordNet,
lexical concepts are organized according to various seman-
tic relations. Words (nouns, verbs, adjectives, and adverbs)
are organized into ‘synonym sets’, known as synsets, each
of which represents the lexical concept underlying a group
of words which are synonymic or near-synonymic in a given
context. Synsets can be related by various lexical seman-
tic relations: synonymy, antonymy, hyponymy/hypernymy
(subclass/superclass, also known as the IsA relation), and
meronymy (also known as holonymy, representing various
types of part-whole relationships).

The primary goal of our research is to create a “PPIWord-
Net”, a WordNet-like linguistic ontology for the protein-
protein interaction domain. This PPIWordNet will then be
used in a lexical-chaining analysis to determines the strings
of biologically related terms which we surmise will cluster
in protein-interaction contexts.

The Protocol
A Hybrid Strategy
The two main challenges in ontology construction are on-
tology concept determination (how the concepts in a do-
main can be discovered and which concepts should go into
the ontology) and relationship determination (how the re-
lationships between concepts are determined). We devel-
oped a hybrid approach for the construction of a domain-
specific ontology, “PPIWordNet”, for the protein-protein in-
teraction (PPI) domain. This approach adopted the “middle-
out” strategy (Noy and McGuinness, 2001) which first iden-
tifies a core of basic domain concepts, and then specifies and
generalizes these concepts as necessary. This hybrid strategy
combines the semi-automatic extraction of domain concepts
and the manual construction of relationships between con-
cepts.

Methodology
The main processes and steps in our hybrid strategy are
shown in Figure 1.

Process 1: PPI Ontology Concept Determination The
main goal of this process was to identify key concepts and
relationships in the protein-protein interaction domain. This
process was broken down further into three main steps: cor-
pus selection; extraction of discriminating terms; seed term
identification and glossary construction.

Corpus selection. For our corpus of full-text PPI articles,
we used the training set provided by the BioCreAtIvE II1

(Critical Assessment for Information Extraction in Biology)
for the interaction extraction task. For a representative cor-
pus of general English usage, we downloaded the current
version of Wikipedia2.

Extraction of discriminating terms. Our basic strategy
for extracting the ‘PPI discriminating terms’ (terms charac-
teristic of the protein-interaction genre) was to compare the
PPI articles with Wikipedia texts to filter out terms which
were not specific to protein interactions.

Step 1: Prepare articles The original PPI articles were in
HTML format rather than the plain-text needed by our
lexical-chaining software. JTidy3, the HTML parser,
was used to parse the HTML files to extract the text.

Step 2: Remove stop words Remove words4 that have no
significance.

Step 3: Term weighting For each PPI article, the term fre-
quency/inverse document frequency (tf-idf) for each

1http://biocreative.sourceforge.net/biocreative 2.html
2http://en.wikipedia.org/wiki/Wikipedia:Database download
3http://jtidy.sourceforge.net
4The original list of stop words was taken from: William B.

Frakes and Ricardo A. Baeza-Yates (Eds.). Information Retrieval:
Data Structures and Algorithms. Prentice-Hall. 1992. This list
was further modified by Charles Clarke for use in TREC and other
information retrieval experiments
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Figure 1: Main processes and steps in our hybrid ontology-construction strategy

term in the articles was calculated. The following for-
mula (Feldman and Dagan, 1995) was used:

(4) tf − idf(tk, dj) = #(tk, dj) ∗ log(|Tr|/#Tr(tk))

in which:

• #(tk, dj) denotes the number of times term tk oc-
curs in document dj

• #Tr(tk) denotes the number of documents in Tr in
which tk occurs

• |Tr| denotes the number of documents

Step 4: Term matrix For the corpus of PPI articles, a term
matrix and a unique list of PPI terms for the entire set
of articles were generated. Each row in the term matrix
represented an article; each column represented a term
appearing in an article and the weight of the term. The
frequency of each term in the unique list was calculated
by averaging the frequencies of the same term in the set
of articles in which this term appeared.

Step 5: Prepare Wikipedia An XML parser was used to
extract only the full-text articles from the entire
Wikipedia database. Stop words were removed and a
Wikipedia term matrix was generated as in the manner
described in Step 4. The generated list of unique terms
in Wikipedia represented the most common terms in
general English usage.

Step 6: Prepare Protein names An XML parser was used
to extract the names of the Protein families along with
their alternative names from the Human Protein Refer-
ence Database (HPRD)5.

Step 7: Prepare compound names A list of compound
names that contain inorganic compounds (compounds
without a C-H bond), organic compounds (compounds
with a C-H bond), and biomolecules was prepared.

Step 8: Generate discriminating terms The list of
protein-protein interaction discriminating terms was
generated by removing from the PPI unique list
the terms appearing in the Wikipedia, protein, and
compounds lists.

Seed term identification and glossary construction. The
initial list of 13931 discriminating terms was passed to our
two biologist domain experts for manual filtering. Filter-
ing of redundant terms, person names, protein/gene names,
etc. reduced the list to 2276 terms with frequent occur-
rence in the corpora. The domain experts then independently
screened the reduced list, scoring terms on a scale of 1 to 5
based on each term’s ability to describe generic protein in-
teractions. This resulted in 121 non-redundant terms highly
scored by both domain experts. Consultation between the
biologists involved removal of terms not having descriptive
value for the retrieval of protein interactions from the liter-

5http://www.hprd.org



ature, as well as addition of descriptive terms not present
in the initial list. This filtering process resulted in a refined
list containing 54 ‘seed terms’ from which the PPIWordNet
ontology would eventually be created. This process is de-
scribed more formally as follows.

Step 1: Filter discriminating term list
• Remove redundant terms
• Remove compound, antibiotics, names
• Remove taxonomic and morphologic terms

Step 2: Score terms for relevance
• Score filtered terms based on PPI relevance

Step 3: Identify seed terms
• Select top-scored terms as seed-term list
• Refine seed-term list

Step 4: Glossary building from seed terms
• Provide WordNet-like definitions for seed terms
• Provide synonyms then build WordNet-like synsets

Process 2: PPI Ontology Construction Each of the 54
seed terms from the previous step was subsequently classi-
fied by our domain experts into one of three categories based
loosely on the Gene Ontology (GO) categorization scheme
(interaction detection method, biological function, interac-
tion property). Each domain expert also defined and listed
parent and child terms for each term. Using the parent and
child relationships, three local hierarchies were created. The
process of constructing the complete PPIWordNet ontology
was performed progressively, integrating each local hierar-
chy in turn.

Step 1: Construct local hierarchies
• Classify seed terms into Gene Ontology categories.
• Construct a local hierarchy for each category consist-

ing of the directly related terms for each seed term.
Only IsA and PartOf relationships were considered.

Step 2: Refine local hierarchies
• Use nouns to replace verbs and adjectives
• Introduce any necessary concepts not in discriminat-

ing term list needed to make the hierarchy coher-
ent, e.g., more-abstract concepts (superclass), more-
specific concepts (subclass), concepts that have the
same superclass (siblings) for each seed term.

Step 3: Expand each local hierarchy recursively
• If a newly added term in the previous step appeared

in the discriminating list and was considered impor-
tant, a local hierarchy was built for the new term.

Step 4: Link local hierarchies
• If common terms were found between local hierar-

chies, the hierarchies were linked.

Step 5: Refine combined ontology of local hierarchies
• Concepts and relationships in the combined ontology

were checked for consistency and completeness.

Portions of our ontology of PPI domain concepts are shown
in Figure 2 (PPI Method terms) and Figure 3 (PPI Molecular
Function terms).

Process 3: Integration with Gene Ontology In the last
step, our ontology of PPI domain concepts and the Gene
Ontology were integrated to produce the final PPIWordNet
ontology. Three integration cases were identified:

Case 1: Unique concept is used as it is.
Case 2: Same concept having different subclasses is

expanded to include all available subclasses.
Case 3: Same concept having different superclasses is

specialized so the more-detailed relation is adopted.

Evaluation
An Experiment in Lexical Chaining
To evaluate our PPIWordNet ontology, we used it as the
basis for a lexical-chaining analysis of protein-protein–
interaction full-text articles. The lexical-chaining algorithm
was modified to compute lexical chains on a paragraph-by-
paragraph basis6.

We randomly selected 100 articles totalling 2461 para-
graphs from the BioCreAtIvE II protein-interaction extrac-
tion task’s training data as the test set. These articles had
been verified as containing detailed information that could
be used to identify protein-protein interactions, so would
also contain a good sampling of the biological terms likely
to occur in protein-protein–interaction contexts.

The PPIWordNet ontology was divided into four compo-
nents: the original Gene Ontology, PPI Method, PPI Inter-
action Property, and PPI Molecular Function. The ontology
components were added in turn to the lexical-chaining anal-
ysis, in the following order:

Step 1: Only Gene Ontology (GO)
Step 2: GO + PPI Method terms
Step 3: GO + PPI Method terms + PPI Interaction Property

terms
Step 4: GO + PPI Method terms + PPI Interaction Property

terms + PPI Molecular Function terms

In evaluating the results of our experiment, we looked for
evidence that the addition of our PPIWordNet ontology had
a positive effect on the lexical chains generated, in terms of
both quality and quantity.

Results
We performed a statistical analysis on the number and types
of lexical chains generated at each step in the analysis. The
results of the analysis are shown in Table 1. The results show
significant improvements in the quantity of lexical chains,
with mild improvements in the quality of the chains. By
quantity, we mean the number of lexical chains generated.
The size of the ontology between each step increased by an

6Descriptions of protein interactions seldom spread across more
than one paragraph as observed in our manual lexical-chaining
study (First Author and Second Author, 2005)
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Figure 2: Portion of the PPIWordNet ontology for Method terms
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Figure 3: Portion of the PPIWordNet ontology for Molecular Function terms



Measurement GO GO + Method GO + Method GO + Method
+ IP + IP + MF

# of terms 60020 60038 60070 60089
in ontology
# of chains 4536 5030 5652 5898
average length 5.23 5.16 5.03 5.10
average lemmas 1.19 1.20 1.29 1.40

Table 1: The lexical-chaining experiment results (GO = the Gene Ontology, IP = Interaction Property, MF = Molecular Function,
lemmas = # of unique terms in a chain, length = # of terms in a chain)

average of 0.05%, while the increase in the number of chains
was 10.9%, 12.3%, and 4.3% respectively, very significant
compared to the trivial change of the ontology’s size. In
terms of quality of lexical chains, we looked at two factors:
‘strength’ and ‘richness’ of a lexical chain. The strength of
a lexical chain is indicated by the length of the chain, and
the richness of a lexical chain is indicated by the lemmas
(unique terms in the chain).

The length of a lexical chain represents the degree of im-
portance of a topic (i.e., theme) in the text, that is, an author
may emphasize the current topic by repeatedly using closely
related terms within a single paragraph. We may reason-
ably assume that the longer a chain, the more important the
theme represented by the overriding sense of the chain. We
determined that the average length of a chain decreased by
an average of 0.76% between each step.

In terms of richness, the number of lemmas increased by
an average of 5.9% between each step, still significant com-
pared to changes in the size of the ontology. We suggest that
a larger number of unique terms in a chain will provide more
valuable information about the protein interaction in the sur-
rounding context, and will thus be more useful in providing
evidence about the biological validity of the interaction.

Conclusions and Future Work

We have outlined a method for biomedical information ex-
traction that makes use of the lexical-chaining discourse
structure in scientific articles to determine strings of bio-
logically related words in protein-interaction contexts. Our
hypothesis is that lexical chains may provide evidence for
the biological significance of the protein interactions oc-
curring in the same context. We have developed a proto-
col for constructing a domain-specific linguistic ontology to
use in lexical-chaining analysis of protein-interaction arti-
cles. The results of our study have shown that this special-
ized ontology signficantly improved the quantity of lexical
chains generated, and to some extent the quality as well. Our
next task is to investigate methods for improving the quality
of the chains, in particular, by enhancing the ontology and
lexical-chaining analysis with more-varied lexical semantic
relations.
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