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R E V I E W

Neuroeconomics: The Consilience of
Brain and Decision
Paul W. Glimcher1* and Aldo Rustichini2

Economics, psychology, and neuroscience are converging today into a single, unified
discipline with the ultimate aim of providing a single, general theory of human
behavior. This is the emerging field of neuroeconomics in which consilience, the
accordance of two or more inductions drawn from different groups of phenomena,
seems to be operating. Economists and psychologists are providing rich conceptual
tools for understanding and modeling behavior, while neurobiologists provide tools
for the study of mechanism. The goal of this discipline is thus to understand the
processes that connect sensation and action by revealing the neurobiological
mechanisms by which decisions are made. This review describes recent develop-
ments in neuroeconomics from both behavioral and biological perspectives.

The full understanding of utility will
come from biology and psychology by
reduction to the elements of human
behavior followed by a bottom-up
synthesis, not from the social sciences
by top-down inference and guesswork
based on intuitive knowledge. It is in
biology and psychology that econo-
mists and social scientists will find the

premises needed to fashion more
predictive models, just as it was in
physics and chemistry that research-
ers found the premises that upgraded
biology. (p. 206) (1)

Consider the famous St. Petersburg para-
dox (2). Which of the following would you
prefer, /40 or a lottery ticket that pays
according to the outcomes of one or more
fair coin tosses: heads you get /2 and the
game ends, tails you get another toss and the
game repeats, but now if the second toss
lands heads up you get /4, and so on. If the
nth toss is the first to land heads up, you get

2n dollars. The game continues, however
long it takes, until the coin lands heads up.
We can assess the average objective, or
expected, value of this lottery by multiplying
the probability of a win on each flip by the
amount of that win:

Expected value 0 ð0:5 " 2Þ þ ð0:25 " 4Þ þ

ð0:125 " 8ÞI

0 1 þ 1 þ 1 þ I

This simple calculation reveals that the
expected value of the lottery is infinite even
though the average person is willing to pay
less than /40 to play it. How could this be?

For an economist, any useful explanation
must begin with a set of assumptions that
renders behavior formally tractable to coher-
ent theoretical and mathematical analysis.
Economists therefore explain this behavior
by assuming that the desirability of money
does not increase linearly, but rather grows
more and more slowly as the total amount at
stake increases. For example, the desirability
of a given amount might be a power function
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of that amount, as shown by the black line in
Fig. 1. A decision-maker for whom the
subjective value, or utility, of money grew
in this fashion would then determine the
desirability, or expected utility, of the St.
Petersburg lottery by multiplying the proba-
bility of a win on each flip by the utility of
the amount won on that flip, and thus he
might well be willing to pay less than /40 to
play this game.

From the point of view of a psychologist
attempting to understand and explain this
same phenomenon, it is the nature of risk
aversion and the psychological mechanisms
that this set of preferences reveals that
become the subject of explanatory study.
The psychological mechanism that accounts
for risk aversion in human subjects, for
example, has been shown to be more
sensitive to monetary losses than to mone-
tary gains. Further, psychologists have sug-
gested that subjective utilities are computed
with regard to somewhat arbitrary and
idiosyncratic monetary reference points, or
frames, set by yet other psychological pro-
cesses (3). Psychologists use observations
like these to argue that human choosers are
endowed with a particularly strong fear of
losses and that they weigh the merits of all
possible gains and losses relative to a
psychological benchmark: The psychological
approach seeks empirically to describe min-
imally complex behavioral tendencies, mod-
ules, or heuristics that can account for the
actions of human choosers.

A traditional neurobiological perspective
uses yet another approach: A hungry bird is
shown a tray that contains five millet seeds
and repeatedly permitted to fly to the tray
and eat the seeds. At a neurobiological level,
the study of this behavior begins with the
assumption that the visual stimulus of the
five seeds must somehow propagate through
the sensory system of the animal to trigger
activation in orienting circuits that move the
bird to the seeds. Next, the same bird is
permitted to fly to a second tray covered by a
piece of paper. When the bird displaces the
cover, half of the time it reveals 12 seeds and
half of the time it reveals nothing. Mecha-
nistically, the visual stimulus must again
trigger an orienting response, and presum-
ably in this case the strength with which
visual signals connect synaptically to the
orienting circuits reflects both the number of
seeds that the bird earns and the likelihood
that seeds will be found under the paper.
Lastly, both trays are presented, and the bird
is observed to fly toward the tray that may
contain 12 millet seeds. A standard neurobi-
ological explanation (4, 5) presumes that
under these circumstances the two different
behavioral circuits compete. In this case the
synapses that elicit an orienting response to
the covered tray are stronger and thus control

behavior. The neurobiological explanation
specifies the minimal neural circuitry re-
quired to account for the observed behavior
of the bird.

What is striking about explanations of
choice behavior by economists, psycholo-
gists, and neurobiologists is the different
levels at which they operate. The economic
approach attempts to describe globally all
choice behavior with a single logically con-
sistent formalism. The psychological ap-
proach examines the ways in which
subjective and objective estimates of value
differ and posits psychological modules that
can account for these observed behavioral
preferences. The neurobiological explanation
starts with the simplest possible neural

circuitry that can account for the simplest
measurable elements of behavior. It seems
obvious that these different levels of expla-
nation should be linked, but how can such a
linkage be accomplished? We argue that a
unified explanation of decision-making is
not only possible but has recently begun and
that, when the linkage between these three
levels of explanation has matured, a new,
more powerful decision science rooted in a
neuroeconomic approach will have been
developed.

A second claim we will make is that once
this reconstruction of decision science is
completed, many of the most puzzling
aspects of human behavior, aspects that
economic theory, psychological analysis, or
neurobiological deconstruction have failed to

explain, will become formally and mecha-
nistically explicable. The claim is, in essence,
that a decision science that simultaneously
engaged all three approaches would be more
heavily constrained and at the same time
would have much greater explanatory power
than do any of these three approaches
operating alone. We will see examples of
how this synthetic approach would operate in
principle and early attempts at synthetic
solutions below.

This reconstruction of the study of de-
cision is also going to be the appropriate
basis for a more ambitious theory that ex-
plains not just how we make decisions but
why. That such an explanation is necessary
and possible is indicated by the fact that
fundamental features of decision making are
common to many species. For example, risk
aversion as shown by the St. Petersburg
paradox has been described in many species.
Studies of birds making choices in risky
environments produce a behavior best de-
scribed by a utility function (Fig. 1) (6, 7).
We know that humans and birds deviated
from a common reptilian ancestor at least
200 million years ago, but this basic function
for choice has remained essentially un-
changed. Such commonalities make a clear
suggestion: A utility function of this type
probably is an efficient and evolved feature
of vertebrate choice. For example, Robson
(8) provides a justification of why a utility
function might be an evolutionary optimal
response to changing environments. Just as
information theory was used by Barlow (9)
to explain why animals as diverse as horse-
shoe crabs and cats use similar encoding
schemes in their visual systems, an econom-
ic theory that relates utility to Darwinian fit-
ness must serve as an overarching tool for
understanding vertebrate choice behavior.

Linking the Decision Sciences
Subjective desirability. The central concept
in modern economic theory is the notion of
subjective utility: Preferences must be de-
scribed as subjective properties of the
chooser. Surprisingly, the notion that prefer-
ences are represented in the nervous system,
that these preferences are subjective, and
that they guide the production of action has
only recently entered the neurobiological
mainstream. We believe that this has been a
critical flaw in neurobiological studies, be-
cause it is essential that economics, psy-
chology, and neuroscience acknowledge a
common phenomenological base to achieve
a reductive unification of the decision sci-
ences. The concepts that guide the behav-
ioral study of decision-making must also
guide the mechanistic study of that process.

In part, this preference-free approach
may have arisen from neurobiology’s roots
in the stimulus-response physiology of the

Value of a Gain
dollar, calories, milliliters

Convex Utility Fn:
Risk Seeking Subjective = Objective

Risk Neutral

Standard Utility Fn:
Risk Averse

Objective Measure
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Fig. 1. Bernoulli’s notion of subjective value or
utility. The black line plots the typical relation-
ship between objective and subjective valua-
tions of an action. As the objective value of a
gain increases, the subjective desirability, or
utility, grows more slowly. Bernoulli demon-
strated that this relationship could account for
the observation that humans are typically risk-
averse. The solid gray line plots a condition in
which subjective value grows more quickly than
objective value, a preference structure that
would yield risk-seeking behavior.
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early twentieth century (10). Working from
Descartes’ philosophy, Sherrington (11) pro-
posed that physiologists should work to
link stimulus and response directly through
what Pavlov (12) would later call a ‘‘definite
nervous path.’’ Scientists like Sherrington
and Pavlov proposed that it was the role
of neuroscience to chart these stimulus-
response connections through the nervous
system.

A critical step beyond this initial frame-
work was a recent effort to explain more
complicated behaviors and to focus on
actions for which deterministic sensory-to-
movement mapping approaches were insuf-
ficient. Newsome and his colleagues (13, 14)
made that step in the late 1980s when they
examined perceptual decision-making by
monkeys viewing ambiguous sensory stim-
uli. In those experiments, monkeys stared at
a display of chaotically moving spots of
light. On training trials, a subset of the spots
moved coherently in a single direction,
whereas the remaining spots moved ran-
domly (15). The direction of this coherent
motion indicated which of two
possible saccadic eye move-
ments would yield a fruit juice
reward, and at the end of each
trial animals were free to make a
saccade. If they made the correct
movement, they then received
the reward. On a critical sub-
set of trials, however, monkeys
viewed displays in which none
of the dots moved in a single
coherent direction, and thus the
display provided no information
from which the location of the
rewarded eye movement could
be deduced. Under these conditions, Newsome
and his colleagues found that the firing
rates of single neurons in the middle tem-
poral visual area (area MT) were still cor-
related with the behavior of the animals,
even when that behavior could not be pre-
dicted from the properties of the stimulus.
Newsome and his colleague Shadlen’s sub-
sequent studies revealed the basic neuro-
biological substrate for perceptual decision-
making and showed convincingly that this
circuit could not be modeled simply as a
single ‘‘definite nervous path’’ from stimu-
lus to response (16).

This work, in turn, accelerated studies of
the posterior parietal cortex, an area inter-
posed between many of the sensory circuits
and motor circuits of the primate brain,
which appeared to play a critical role in the
perceptual decision-making Newsome has
studied (17, 18). Platt and Glimcher (19)
made an important advance when they
extended Newsome’s approach by proposing
that posterior parietal cortex might play a
role in decision-making in an economic

sense and that it might encode the desirabil-
ities of making particular movements.

In Platt and Glimcher’s experiments,
trained rhesus monkeys were allowed to
participate in repeated rounds of a simple
lottery while the activity of nerve cells in the
posterior parietal cortex was monitored. At
the beginning of each round, two yellow
spots were illuminated on a screen, one to
the left and one to the right of where the
monkey was looking. This began the lottery
phase of the round, a period during which
the monkey did not know whether the left or
right light would be offered as a prize at the
end of that round. At the end of this phase, a
third light changed color to red or green,
indicating which of the two initial lights had
been randomly selected to yield a fruit juice
reward on that particular round. The monkey
received the fruit juice if he oriented to the
selected light at the end of the round. While
monkeys played hundreds of rounds of this
game, Platt and Glimcher systematically
varied either the relative probabilities that
the left or right lights would be selected at

the end of each round or the size of the
reward associated with each. These two
variables were selected because economic
theories assess desirability by combining the
value and likelihood of gain in some
subjective manner. Platt and Glimcher found
that some parietal neurons did indeed encode
the value and likelihood of reinforcement
during the lottery phase of each round.
Under these conditions, the brains of the
monkeys explicitly encoded something very
much like the economically defined expected
value or expected utility of each light in this
simple lottery task.

Subsequent studies of human decision-
making using functional magnetic resonance
imaging (fMRI) have yielded similar con-
clusions. Knutson and colleagues (20) have
shown, for example, that activity in the hu-
man striatum is correlated with the magni-
tude of the monetary reward subjects earn
during lotteries, and Paulus and colleagues
(21) have shown a similar result in the
human posterior parietal cortex. In a partic-
ularly interesting study, Breiter and col-

leagues (22) (Fig. 2) presented human
subjects on sequential rounds with one of
three possible lotteries. In lottery one (the
good lottery), they faced equal chances of
winning /10, /2.50, or /0. In lottery two (the
intermediate lottery), they faced equal chan-
ces of winning /2.50, winning /0, or losing
/1.50. In lottery three (the bad lottery), they
faced equal chances of winning /0, losing
/1.50, or losing /6. At the beginning of each
round, the subjects were told which lottery
they would be playing, and the average
activity in many brain areas was simulta-
neously measured. After that measurement
was complete, the lottery was actually
played and the humans were then told how
much real money they had earned on that
round. Importantly, all three of these lotteries
present a one-third possibility of winning
/0, but they do so under different conditions.
In the good lottery, winning /0 is the worst
possible outcome, whereas in the bad lottery
it is the best. The psychologists Kahneman
and Tversky (23) have shown that, when a
human participates in this good lottery, they

find winning /0 to be an intensely
negative outcome whereas when
a human participates in the bad
lottery, they find winning /0 to be
a positive outcome; subjective
utilities are computed with regard
to a reference frame. Breiter and
colleagues found that the activity
of the sublenticular extended
amygdala encoded the desirabil-
ity of each lottery, taking into ac-
count this behaviorally described
framing effect.

Other recent neurobiological
studies have revealed yet other

neurally encoded variables that include the
log likelihood that a given eye movement
will result in a reward (24, 25), the very
closely related integral of perceptual signals
indicating which saccade will be rewarded in
the Newsome task (26, 27), the average rate
at which a saccade has been rewarded in the
recent past (28), the instantaneous likeli-
hood, or hazard, that a reinforced saccade
will be instructed (29), and combinations of
these variables (30).

Strategic thinking. All of these results
suggest that classical utility theory can be
used as a central concept for the study of
choice in economics, psychology, and neu-
roscience. In the middle of the twentieth
century, however, economists pushed utility
theory beyond this boundary, enhancing it
to include the study of the strategic
interactions which arise when decision
makers confront intelligent opponents.
Extending the concept of subjective utility,
VonNeumann and Morgenstern (31) and
Nash (32, 33) developed a formal utility-
based economic approach in the theory of

Good

$10

$0

$2.50

Int.

$2.50 $0

$1.50
loss

Bad

$0 $1.50
loss

$6
loss

Fig. 2. The three lotteries used in the Breiter and colleagues experiment.
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games. Recently, Lee and his colleagues (34)
and Dorris and Glimcher (35) have begun to
link the neurobiological corpus to this
literature by examining the activity of single
neurons in awake-behaving monkeys en-
gaged in decision-making during strategic
conflicts. In Dorris and Glimcher’s study,
two opponents face each other, an employer
and an employee. On each round of the game
the employee must decide whether to go to
work, in which case he earns a fixed wage,
or whether to shirk, in hopes of earning his
wage plus a bonus. The goal of the employee
is simply to maximize his gains in terms of
salary and bonus. The employer, on the other
hand, must decide between trusting his em-
ployee to arrive for work or spending money
to hire an inspector who can actually check
and see whether the employee arrived for
work that day. The goal of the employer is to
spend as little as possible on inspections while
maximizing the employee’s incentive to work.

The inspection game is
of particular interest to game
theorists and economists be-
cause rational strategies for
utility maximization during
this strategic conflict lead
to predictable outcomes ac-
cording to an equilibrium
theory originally developed
by John Nash in the 1950s.
Nash (36) equilibrium theo-
ry describes how, when the
cost of inspection to the
employer is set high, the
efficient strategy for both
players converges on a solu-
tion in which the employ-
ee manages to shirk fairly
often. Conversely, a low in-
spection cost to the employer defines a
theoretical equilibrium solution in which
shirk rates are low. One of the fundamental
insights this formal analysis reveals is that at
a mixed strategy equilibrium, a situation in
which a rational player should distribute his
actions amongst two or more alternatives in
an unpredictable fashion, the desirability of
the two or more actions in equilibrium must
be equivalent. The Nash approach argues,
essentially, that a behavioral equilibrium oc-
curs when the desirability of working and
shirking are rendered equal by the behavior
of one’s opponent irrespective of how often
that equilibrium requires that one work.
When Dorris and Glimcher examined the
activity of neurons in the posterior parietal
cortex of monkeys playing the inspection
game, they found neurons that carried a sig-
nal that behaved like relative expected util-
ity. When the monkey’s behavior was well
predicted by the Nash equations, neural ac-
tivity was fixed at a single level irrespective
of the frequency with which the monkey

chose to make a particular response, even
though these same neurons were strongly
modulated by changes in the value of ac-
tions during lottery tasks.

Research on human-human strategic
interactions that are well described by
classical game theory are also now under
way in a number of laboratories (37). Like
the earlier fMRI studies of simple decision-
making tasks, these experiments are also
beginning to shape the common ground
between economics, psychology, and neu-
roscience. Taken together, these findings
suggest that at least under some circum-
stances decisions may actually be made in
the primate neuro-architecture in a manner
long suspected by economists and now
being actively analyzed by psychologists
and neuroscientists: Neural circuits may
compute and represent the desirability of
making a response. Economics, psycholo-
gy, and neuroscience do seem to be

converging around a common conceptual
framework. All three disciplines are begin-
ning to acknowledge that decision-making
involves the representation of subjective
desirabilities. The challenge that this con-
vergence around a single concept poses,
however, is to leverage the intersection of
these three disciplines to explain choice
behavior that cannot be described with the
common framework of utility theory; these
are classes of behaviors which have sty-
mied traditional economics and which have
lain far beyond the reach of traditional
neuroscience. If it is to be of value, the goal
of a unified decision science will have to be
to use all three sets of approaches simul-
taneously to gain traction in this new
territory.

Beyond Classical Concepts
Choice under risk. As we have seen, the
introduction of the concept of expected utility
solved the St. Petersburg’s puzzle and formed
the core of neoclassical economics. Sub-

sequent puzzles and paradoxes, however, have
plagued this solution. In Ellsberg’s (1961)
paradox (38) (Fig. 3) you are presented with
an urn, and you are told that it contains 90
balls. Of these, 30 are blue, and 60 are either
red or yellow; any proportion is possible.
You are then offered a choice between a
lottery that pays /100 if a blue ball is drawn
(a 1/3 probability) and one that pays /100 if a
red ball is drawn. The probability of a red
draw is unspecified or ambiguous: It is a
choice between an event with a known
probability and an event with an unknown
probability. Under these circumstances, peo-
ple typically choose the first lottery, which
wins if a blue ball is drawn. According to
expected utility theory they could only do so
if they believe that there are fewer than 30
red balls in the urn or, equivalently, that
there are more than 30 yellow balls. Then
(before any balls are actually drawn, but with
the same urn standing in front of you) you

are asked to choose again,
this time between a lottery
that pays /100 on either
blue or yellow and one that
pays /100 on either red or
yellow. Now the likelihood
of winning is clear in the
second case (a 2/3 proba-
bility of winning /100) but
unclear in the first case (a
probability between 1/3
and 1). People this time
typically choose the second
lottery. The first lottery
seems less attractive, be-
cause there might be too
few yellow balls. Is there
anything wrong with this
behavior? If expected util-

ity theory is correct, then there certainly is:
You cannot think that there are too few and
too many yellow balls in the urn at the same
time.

The Ellsberg paradox is just one of many
demonstrations presented in the last half of
the twentieth century that were considered
formal falsifications of expected utility
theory. An even earlier example is Allais’
paradox (39), based on the idea that a certain
outcome may be perceived as more desir-
able, in a qualitatively different way, than
any random outcome, even if very likely
(40). These examples proved that expected
utility theory as originally proposed could
not be globally correct; at best it could only
predict choices under some circumstances.
This has led economists and social psychol-
ogists both to attempt modifications to
expected utility theory and to replace it
outright. Both the modifications and replace-
ments have provided important and econom-
ically powerful insights into choice behavior
but have not yet provided a global theory of

Ellsberg’s Paradox

If blue is preferred then blue/yellow should also be preferred
but it is not.30 blue

60 red+yellow

Choice 1

blue
$100

-or-

Number of Balls in Urn:

red
$100

30 x

Choice 2

blue/yellow
$100

-or-

Number of Balls in Urn:

red/yellow
$100

30+(60-x) 60

Fig. 3. Ellsberg’s paradox. If blue is preferred in choice one, then blue/yellow should
logically be preferred in choice two. Surprisingly, this is rarely the case.
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choice that can truly replace expected utility
theory.

The emerging discipline of neuroeconom-
ics offers a new strategy both for testing
existing models of all types and for devel-
oping new models with empirical techniques.
If we succeed in understanding mechanisti-
cally how choices that violate expected
utility theory are made at a neural level,
then a new global theory of choice will be
developed. To that end, a number of labo-
ratories are now beginning to reexamine the
conditions under which expected utility
theory fails.

The reason that expected utility theory
fails under some conditions may be that
choosers use more than one evaluative
mechanism at a neurobiological level (41).
For example, in Dickhaut et al. (42), the
processes involved when a certain outcome is
one of the options are different from
those involved when only random out-
comes are at stake, providing an ex-
planation of the Allais’ paradox cited
above.

Under many conditions these
mechanisms may work together to
yield choices similar to those pre-
dicted by expected utility theory but
may produce odd results when used
in isolation, in novel combinations,
or in situations for which they are
ill suited. Recent work by Damasio
and colleagues [for example, (43)]
on the class of behavioral paradoxes
from which the Ellsberg example is
drawn seem to support this conclu-
sion. These studies suggest that an
ambiguity-sensitive mechanism as-
sociated with the expression of emo-
tion may reside, at least in part, in
the ventromedial prefrontal cortex
(VMPFC) (Fig. 4) and may be re-
sponsible for choice under some but not all
conditions. These researchers and others
have shown that patients with damage to
this area have an impaired ability to make
some classes of decisions and have diffi-
culties planning their work and choosing
friends. Further, the actions these individu-
als do elect to pursue often lead to financial
as well as personal losses. Yet despite these
specific failures, patients with damage to
the VMPFC show normal performance on
multiple-choice tests of intelligence.

These observations and others like them
have led Damasio to propose that the
inability of patients with VMPFC lesions
to make advantageous decisions under
some circumstances is caused by damage
to an emotional mechanism that stores and
signals the value of future consequences of
an action, the somatic marker hypothesis.
The hypothesis proposes that, because they
lack this emotional mechanism, the patients

must rely on other brain mechanisms that
achieve a different analysis of the numer-
ous and often conflicting options involving
both immediate and future consequences.
This other mechanism, operating alone, is
hypothesized to produce decisions that are
less efficient and slower than those pro-
duced by a normal, intact, system.

The importance of the emotion-related
VMPFC for regular decision-making has
been confirmed by experiments where
subjects were asked to make choices among
a group of alternatives that carry a mone-
tary reward (typically by selecting one card
at a time from four different decks of
cards), but for which the probability of
reward is unspecified (44). This is precise-
ly the ambiguous situation that produces
Ellsberg’s paradox. Under these conditions,
patients with VMPFC lesions seem to lack

an aversion to ambiguity or losses that
normal subjects have, an aversion that may
be quite advantageous under many condi-
tions. Further support for this hypothesis
comes from brain imaging studies. For
example, O’Doherty et al. (45) have shown
that the VMPFC is relatively more active
when human subjects are actively learning
about the availability of rewards and punish-
ments during one of these ambiguous choice
tasks.

The process may be very different,
however, when subjects simply choose be-
tween options without any feedback or
learning taking place at the same time. For
example, Rustichini et al. (46) asked normal
subjects to make choices among ambiguous
lotteries, risky lotteries, and certain out-
comes while their brain activity was moni-
tored. Subjects were paid for the outcome of
their choices, but the outcome was commu-
nicated only after the experiment was over.

Under these conditions, the VMPFC did not
show any activation; it was actually less
active when choices were being made than
when subjects waited between trials. These
results suggest that emotional circuits may
be important in learning and processing
information, rather than in selecting among
alternatives.

Together, these data may begin to ex-
plain, in a mechanistic way, how information
is analyzed when at least one class of
behavior which is not predicted by the
expected utility theory is produced. The
process of learning and evaluating feedback
may involve emotion-related areas. Ambigu-
ity aversion, whether advantageous or disad-
vantageous in a particular situation, may
become explicable as we learn more about
the computations that brain areas like the
VMPFC perform.

Strategic cooperation. As with the
Ellsberg paradox, challenges have also
been raised recently to classical game
theory. In a path-breaking study, Guth
et al. (47) analyzed the behavior of
subjects playing the ultimatum game.
In this game, a first player, the pro-
poser, has /10 to split with a second
player. He can offer any amount be-
tween zero and /10. The second player
is informed of the offer and can ac-
cept or refuse. If she accepts, the split
is made. If she refuses, both players
get nothing. The prediction of a re-
strictive concept of game theory, the
subgame perfect equilibrium, is that
for any positive amount offered by the
proposer, the second player knows that
she faces a choice between gaining
nothing (if she refuses the offer) or
something (if she accepts). The pro-
poser should therefore always offer the
minimum possible split to player two,

who should always accept. Contrary to this
prediction, the robust experimental finding is
that low offers (typically /2 or even /3) are
consistently refused. The second player ap-
pears to prefer, under these conditions, to
gain nothing. Anticipating this, proposers typ-
ically avoid low offers.

Although expected utility theorists have
proposed some explanations for this be-
havior, it may well be that by analyzing
the neural circuits active during the ulti-
matum game we may be able to both ex-
plain the causes of this behavior and to
predict it. Studying the ultimatum game in
subjects undergoing brain scans, Sanfey
et al. (48) found that offers refused by the
second players activated specific brain cir-
cuits in those players, and interestingly
these brain circuits are also associated
with emotional arousal: the anterior insula
(AI, associated with disgust, both physical
and emotional), the dorsolateral prefrontal

Fig. 4. Medial view of the left half of a human brain, with the
front of the brain on the right side of the image. The human
ventromedial prefrontal cortex is shown in red.
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cortex (DLPFC, associated with goal main-
tenance and executive control), and the an-
terior cingulate cortex (ACC, associated with
detection of cognitive conflict). Also sig-
nificant is the correlation of activation with
choices: An activation of the AI is posi-
tively correlated with rejection, suggest-
ing that an emotional arousal associated
with a low offer is correlated with rejec-
tion. The overall picture is that offers we
might consider unfair may activate emo-
tional circuits of the brain involved in the
decision to reject an offer. If we can come
to more fully understand how these cir-
cuits reach this conclusion, then a behav-
ior that was difficult for classical game
theory to predict may become fully explica-
ble with the synthetic approach that neuro-
economics provides.

A similar line of investigation has exam-
ined interplayer cooperation during single
rounds of the trust game. In this game, two
players move sequentially. The first player
can decide to transfer a sum of money out of
an initial endowment that she receives into
an investment pool that immediately triples
in value. The second player then gains con-
trol of the investment and can divide it be-
tween the two players in any way he chooses.
In this game, the only Nash equilibrium
choice for the first player is to transfer
nothing into the investment. Were she to
make any transfer, the second player should
take all of the money for himself. However,
in real experiments the first player typically
does transfer a significant amount into the
investment, and the second player recipro-
cates by returning part of the pool. McCabe
et al. (49) had subjects play the trust game
both against a human opponent and against
a computer program which, they were told,
would play a human-like strategy. Under
these conditions McCabe and colleagues
found that subjects were more likely to
cooperate with real humans than with com-
puters and that cooperators have a signifi-
cantly different brain activation in the two
conditions. Cooperation is associated with
activation of the anterior paracingulate cor-
tex, a brain region associated with (50, 51)
interpreting and monitoring the mental state
of others.

Although these studies are in their early
stages, they suggest the existence of specific
brain components that make specialized
contributions to decision making. The chal-
lenge that these studies face is to derive
detailed computational models of the neural
mechanisms, which will make neuroeco-
nomic models broadly predictive as well as
explanatory.

Summary
Economics, psychology, and neuroscience
are converging into a single, unified field

aimed at providing a theory of human
behavior. In this enterprise, the method and
the standard set by neuroscience is the final
goal: a reconstruction of the process and
mechanism that goes from a stimulus pre-
sented to the subject to his final action in
response. Economics provides the conceptu-
al structure and the object of the analysis. In
this emerging view, people are seen as
deciding among options on the basis of the
relative desirability of each option. This is
true when they are in isolation as well as
when they are in strategic (interaction with
few persons) and market (interaction with a
large number) environments. The recent
research we have been surveying describes
how desirability is realized as a concrete
object, a neural signal in the human and
animal brain, rather than as a purely theoret-
ical construction. Desirability is computed
and is represented in the brain, and we now
have the means to test, measure, and rep-
resent this activation.

But the complete reconstruction of the
decision process, and hence of human
behavior, is not going to be easy, because
two of the cornerstones of economic
analysis, subjective utility theory and Nash
equilibrium, provide, even from the de-
scriptive point of view, an incomplete
picture. For example, desirability as repre-
sented by the simple economic formalism
of expected utility may be appropriate only
in simple conditions, where ambiguity is
excluded. A more general notion is needed
and, as we have seen, is beginning to be
investigated and developed by psycholo-
gists and economists working together. The
goal of the emerging neuroeconomic pro-
gram will have to be a mechanistic,
behavioral, and mathematical explanation
of choice that transcends the explanations
available to neuroscientists, psychologists,
and economists working alone. Although it
is unclear today how complete this expla-
nation will ultimately be, neuroeconomic
approaches have already begun to yield
substantial fruit and to fuse natural and
social scientific approaches to the study of
human behavior.
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