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INTRODUCTION

Human creativity operates in many domains, including scienti! c discovery, techno-
logical invention, artistic imagination, and social innovation. What are the cognitive 
processes that produce these creative results? Are there psychological mechanisms 
common to such diverse products of creativity as Darwin’s theory of evolution, 
Edison’s lightbulb, van Gogh’s paintings of sun" owers, and Bismarck’s introduction 
of old-age pensions? # is chapter will develop and evaluate the combinatorial con-
jecture that all creativity, including scienti! c discovery and technological invention, 
results from combinations of mental representations.
# e combinatorial conjecture has been proposed or assumed by many authors, 

but the evidence presented for it has been restricted to a few examples (e.g., Boden, 
2004; Finke, Ward, & Smith, 1992; Koestler, 1967; Mednick, 1962; Poincaré, 1921; 
# agard, 1988, 1997). # is chapter gives a more thorough evaluation of the conjec-
ture by seeing whether it applies to 100 important cases of scienti! c discovery and 
to 100 important cases of technological invention. # e primary result of examina-
tion of these cases is support for the combinatorial conjecture: No counterexamples 
were found. But the study of 200 creative episodes was interesting in other ways, and 
this chapter will report a collection of ! ndings about the nature of the representa-
tions and processes used. # ese ! ndings concern the role of visual and other kinds 
of representations and the extent to which discoveries and inventions were acciden-
tal, analogical, and observational or theoretical.

Before ge$ ing into the historical studies, I will provide a theoretical perspective on 
creative conceptual combination by reviewing a new neurocomputational account 
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0 that provides an explanation of how neural representations can be combined. # is 

account accommodates visual and other nonverbal kinds of representations and 
therefore is capable of applying to a wide range of creative episodes. I then describe 
the results of study 1, which looks at 100 examples of scienti! c discovery, and study 
2, concerning 100 examples of technological invention. # ese large samples con! rm 
the combinatorial conjecture, whose claim, however, is nontrivial, as I will show by 
considering theoretical objections to it from the extreme embodiment perspective 
that thinking and hence creativity are not representational and computational. I will 
argue that these objections are unwarranted and that the combinatorial conjecture 
remains highly plausible for scienti! c discovery and technological invention.

NEURAL THEORY OF CONCEPTUAL COMBINATION

If creativity is to be explained as a combination of mental representations, we need 
a rigorous scienti! c account of the nature of representations and the processes that 
combine them. # agard and Stewart (2011) use a neurocomputational model to 
show how representations construed as brain processes can be combined. # is 
section will sketch the basic assumptions of this model without a$ empting to give 
mathematical details or general justi! cation.

From the perspective of current work in theoretical neuroscience, concepts and 
other representations are pa$ erns of ! ring activity in neural populations (Dayan 
and Abbo$ , 2001; Eliasmith and Anderson, 2003; O’Reilly and Munakata, 2000; 
# agard, 2010a). Hence conceptual combination needs to be understood as a pro-
cess of pu$ ing together new pa$ erns of ! ring activity from old ones. # is approach 
has the potential of being far more " exible than previous psychological accounts of 
conceptual combination that have been restricted to verbal representations. # ere 
is growing evidence that concepts are neural representations that encode informa-
tion in various modalities, including verbally but also encompassing the results of 
sensory processes such as vision (Barsalou, Simmons, Barbey, & Wilson, 2003). In 
contrast to the verbal and mathematical data structures that have traditionally been 
used in cognitive science, neural representations are adept at capturing visual and 
other kinds of encodings.
# ere are currently two main theoretical approaches in cognitive science to the 

problem of binding multiple representations together. # e most prominent is syn-
chrony, through which di% erent neural representations are bound together by virtue 
of their temporal coordination (Hummel & Holyoak, 2003; Shastri, 1999). # agard 
and Stewart (2011) follow Eliasmith (2005, forthcoming) in employing a di% erent 
method called convolution, which is a mathematical technique for braiding struc-
tures such as waves and vectors together. Convolution was originally developed 
for applications to waves in electrical engineering, but Plate (2003) showed how it 
could be adapted to provide an account of how vectors of numbers corresponding to 
the ! ring rates of neurons could be combined into larger structures without losing 
crucial structural information (see Eliasmith & # agard, 2001, for an introduction). 
# en Eliasmith (2005, forthcoming) showed how convolution can be performed by 
populations of spiking neurons. # e contribution of # agard and Stewart (2011) is 

OUP UNCORRECTED PROOF – FIRST-PROOF, 03/10/12, NEWGEN

17_Proctor_Ch16.indd   39017_Proctor_Ch16.indd   390 3/10/2012   4:34:58 PM3/10/2012   4:34:58 PM



391 
Creative Com

bination of R
epresentations

to apply such mechanisms to the Aha! experience that results when combination of 
neural representations is su&  ciently novel that it generates an emotional reaction.

Accordingly, the combinatorial conjecture can be " eshed out as follows: All 
creativity results from convolution-based combination of mental representations 
consisting of pa$ erns of ! ring in neural populations. # e historical studies to be 
described next do not serve to evaluate these neurocomputational claims, but 
directly address the underlying assumption that representation combination is the 
fundamental mechanism of creativity in various domains.

STUDY 1: SCIENTIFIC DISCOVERY

Case studies in the history, philosophy, and psychology of science have use-
fully looked in detail at select examples of advances in science and technology 
(e.g., Gorman, Tweney, Gooding, & Kincannon, 2005). However, generalizations 
about the nature of scienti! c discovery need a more systematic look at a large num-
ber of episodes. Accordingly, I conducted an analysis of the cases described in a book 
called 100 Greatest Science Discoveries of All Time (Haven, 2007). # e author, Kendall 
Haven, is a reputable science journalist with a background as a research scientist and 
many publications. For my purposes, there is no need to defend the claim that these 
are exactly the “100 greatest,” only that they are undeniably a large collection of very 
important discoveries, from the law of the lever to the human genome. Most crucial 
for a serious test of the combinatorial conjecture, the examples were not chosen by 
me and so were not biased by motivation to con! rm rather than refute it.

For each of the 100 discoveries, it was possible to identify concepts whose 
combination contributed to the discovery. # e ! rst example discussed by Haven 
is Archimedes’ discovery of the principle of the lever, that the weights pushing 
down on each side of a lever are proportional to lengths of the board on each side 
of the balance point. # is principle is a newly created proposition, which I take to 
be a mental representation analogous to a sentence. Philosophers sometimes talk of 
propositions as abstract meanings of sentences, but there is no reason to believe in 
the existence of such abstract entities, so I will employ the cognitive science idea of 
a proposition as a mental representation carried out by neural processes. # e new 
proposition about levers is clearly the result of combining other mental represen-
tations in the form of concepts such as weight, push, side, and proportional. Hence 
Archimedes discovery of the principle of the lever and Haven’s 99 other examples 
all con! rm the combinatorial conjecture. # e spreadsheet containing my analysis of 
the 100 is available on request.
# e example that presented the biggest potential challenge to the combinato-

rial conjecture was the 1938 discovery in South Africa of a coelacanth, from a spe-
cies that was thought to have been extinct for over 80 million years. # e curator of 
a local museum came across a novel ! sh and sent it to a biologist who recognized it 
from fossil records. My ! rst impression was that this discovery was a simple percep-
tual recognition that did not amount to the generation of any new representations. 
On re" ection, however, it became clear that what made this discovery creative was 
recognition of the existence of coelacanths that are currently alive. # e criteria for 

OUP UNCORRECTED PROOF – FIRST-PROOF, 03/10/12, NEWGEN

17_Proctor_Ch16.indd   39117_Proctor_Ch16.indd   391 3/10/2012   4:34:58 PM3/10/2012   4:34:58 PM



Sc
ie

nt
ifi 

c 
Cr

ea
tiv

ity
 

39
2 creativity, as suggested by Boden (2004), are that a development be novel, surpris-

ing, and important. Merely ! nding a coelacanth fossil would not satisfy any of these 
criteria, but a live specimen was indeed surprising and important. # us the creative 
discovery in this case is not just the recognition of a coelacanth, but the proposition 
that living coelacanths currently exist. # is proposition requires the combination of 
concepts such as living and coelacanth, and hence serves to con! rm rather than refute 
the combinatorial conjecture. Similarly, the serendipitous discovery of penicillin 
might be erroneously construed as simply a ma$ er of perception, but what made 
Alexander Fleming’s discovery novel, surprising, and important was his more com-
plex recognition that mold was killing bacteria, producing the key conceptual com-
bination bacteria-killing mold. Serendipity and conceptual combination go together.

Note, however, that the coelacanth discovery did not require the generation 
of any new concepts, as the concept coelacanth was already familiar to evolution-
ary biologists. I was surprised to ! nd that I could identify original new concepts 
(indicated by newly coined words) in only 60 of the 100 cases. # is is probably an 
undercount that could be increased by more detailed study of the cases, but there 
still seem to be many cases where a major scienti! c discovery was made without 
introducing novel, permanent concepts. Combination of concepts into new propo-
sitions, but not permanent new concepts, include Copernicus on the earth rotating 
around the sun, Galileo on falling objects, and Boyle’s law of gases. It is important to 
recognize that the combinatorial conjecture is true concerning mental representa-
tions in the form of propositions, but would be false if it were interpreted as a claim 
about creativity requiring the generation of new, permanent concepts.

In looking at Haven’s sample of scienti! c discoveries, I was interested in what kinds of 
mental representations were used in discovery generation. Obviously, all 100 involved 
verbal representations that have been used to communicate them to others, but I con-
jectured that visual and other kinds of mental representations that encode information 
in nonverbal formats might also be relevant. (For a review of di% erent kinds of mental 
representation, see # agard, 2005.) Mathematical representations are a subset of verbal 
representations that use numbers and/or equations. # ere are many scienti! c discover-
ies in which mathematics was important, ranging from Archimedes’ law of the lever to 
Einstein’s generation of E=mc2. I identi! ed 46 of the 100 discoveries as involving math-
ematical representations, although some digging could probably increase this number. 
Mathematical representations were much more common in physics than in biology and 
medicine, where many discoveries such as the existence of cells were qualitative. For 
tables summarizing the results described in this section and comparing them for those 
of technological invention, see the next section.

What role do nonverbal representations play in scienti! c creativity? Visual rep-
resentations akin to pictures seemed to me important in at least 41 of the discover-
ies, ranging from Copernicus picturing the earth going around the sun to Robert 
Bakker’s imagining the activities of warm-blooded dinosaurs. Some of these were 
more obviously visual than others as seen from their pictorial presentations, for 
example in Andreas Vesalius’s revisionary drawings of human anatomy and Robert 
Hooke’s drawings of cells viewed through a microscope. I found only ! ve examples, 
however, where nonverbal, nonvisual representations seemed to play an important 
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role in creative thinking, although more detailed historical analysis may well turn 
up more. I speculate that kinesthetic representations contributed to Archimedes’ 
discoveries about levers and buoyancy and possibly to Galileo’s discoveries about 
falling objects. Touch seems to have been relevant to Benjamin Franklin’s discover-
ies about lightning and electricity because he felt sparks, and to Count Rumford’s 
ideas about heat from friction. Sound de! nitely contributed to Christian Doppler’s 
thinking about shi' ing frequencies. Otherwise, scienti! c thinking seems to have 
operated well just with visual and verbal (including mathematical) representations. 
# e next section reports that nonverbal representations are much more important 
in technological invention.

Analysis of this relatively large sample of scienti! c discoveries provided an 
opportunity to examine questions independent of the combinatorial conjecture. 
I was curious how many of the discoveries were based in large part on accidents, 
that is events that were not the result of an intentional plan of investigation. Based 
on Haven’s brief accounts and my own knowledge of historical events, I estimated 
that around a quarter of the discoveries had a substantial accidental component. 
For example, Galileo was not looking for moons of Jupiter with his telescope, van 
Leeuwenhoek was not seeking microbes with his microscope, and Roentgen was 
very surprised to encounter X-rays. Hence serendipity is an important part of sci-
enti! c discovery, but the majority of cases seem to result from intentional problem 
solving. For a discussion of many cases of serendipity in scienti! c discovery, see 
Roberts (1989) and Meyers (2007).

Most unintended discoveries are observational, but serendipity can also be a fea-
ture of theoretical research. Heisenberg’s uncertainty principle was an unanticipated 
consequence of his mathematical explorations, and Lorenz was surprised to ! nd 
large outcomes from tiny changes in the starting conditions of his computational 
model of atmospheric storms.

Analogy has often been recognized as an important creative cognitive pro-
cess, and many important examples have been identified (Holyoak & Thagard, 
1995, Chapter 8). I found a significant analogical component in 14 of Haven’s 
samples, with many cases that have not been analyzed in the philosophical or 
psychological literatures on analogy. It is quite possible that more examples of 
analogy could be found through more detailed historical analysis of the cases, 
but I doubt that would change the conclusion that analogy is an important but by 
no means exclusive mechanism for scientific creativity. Table 16.1 summarizes 
14 cases of analogical discovery, noting the source analog that generated ideas 
about the target domain leading to a discovery. Table 16.1 also indicates the 
representational modalities used in addition to the ubiquitous verbal one. It is 
interesting that visual representations seem to be important in a greater propor-
tion of analogical discoveries (11/14) than in discoveries in general (41/100).

Dunbar (1995) distinguished between local analogies that operate within a single 
domain and long-distance analogies that cross domains. All but two of the important 
analogical discoveries are long-distance, requiring a major mental leap across domains. 
Particularly interesting are three cases, indicated with an asterisk in “long,*” where the 
analogy served to unite previously disparate domains. Before Newton, projectile and 
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planetary motion were distinct domains, but Newtonian mechanics uni! ed them in 
a common physical framework. Similarly, before Franklin, sparks and lightning were 
di% erent kinds of things, and before Faraday electricity and magnetism were uncon-
nected. In these three cases, analogical thinking brought about an important kind of 
conceptual change in the nature of domains that were changed through new unifying 
theories, so that a long-distance analogy turned into a more local one.

Philosophers o' en debate about the relative importance of theory and obser-
vation in science, so I coded the 100 examples for whether the discoveries were 
primarily:

Observational, based on perception using human senses;
Instrumental, based on observations using instruments; or

Table 16.1 Scientifi c discoveries based on analogy. See text for explanation of the 

asterisk in “long*”

DISCOVERY TARGET SOURCE MODALITY DISTANCE

Living cells Living cells Monk cells Visual Long

Gravity Planetary 
motion

Projectile 
motion

Visual, 
mathematical, 
kinesthetic

Long*

Fossils Sharks teeth Stone teeth Visual Long

Life Hierarchy Tree Visual Long

Lightning Lightning Spark Visual, heat Long*

Vaccination Smallpox Cowpox Visual Local

Ultraviolet light Ultraviolet Infrared Mathematical Local

Electromagnetism Magnetism Electricity Visual, 
mathematical

Long*

Evolution Natural 
selection

Malthusian 
competition

Mathematical Long

Periodic table Elements Piano scale Visual Long

Relativity Gravity Elevator Visual, 
mathematical

Long

Fault lines Rock layers Rubber bands Visual Long

Earth mantle Earth Egg Visual Long

Quantum theory Electrons Crystals Mathematical Long
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Theoretical, requiring hypotheses that go beyond the results of sensory 
and instrumental observation.

# e results are interesting, with 70 of the discoveries theoretical, 18 observational, 
and 12 instrumental. Examples of discoveries made with unaided observations 
include Davy’s discovery of anesthesia, Mendel’s ! ndings about heredity, and 
Fleming’s discovery of penicillin. Instruments important for making observations 
not possible with ordinary human perception include the telescope (Galileo), 
microscope (Pasteur), and spectograph (Hubble).

Finally, I was interested in the extent to which scienti! c discoveries depended on 
previous technological advances and the extent to which science led to subsequent 
advances in technology. My counts are preliminary and should be viewed only as 
approximate minimums to be made more precise by more thorough historical anal-
ysis, but they are nevertheless interesting. I found 37 of the discoveries as depending 
in important ways on technological advances. # is was obviously much more than 
the 12 that were directly based on instrumental observations: Many of the theoreti-
cal discoveries arose from observations that required new technologies, for example, 
Davy’s electrochemical ideas resulting from the availability of ba$ eries. I identi! ed 
21 scienti! c discoveries that in turn led to technological advances, such as Franklin’s 
discoveries about electricity enabling him to invent the lightning rod. # orough his-
torical research would undoubtedly generate more examples.
# us the study of 100 examples of scienti! c discovery was useful for much more 

than just testing the combinatorial conjecture. It served to clarify the di% erences 
between generating new propositions and generating new concepts, with only the for-
mer occurring in all cases of scienti! c discovery. Verbal representations seem to be uni-
versal in discoveries, but are complemented in many cases by mathematical and visual 
ones. Other sensory representations did not seem to be very important for scienti! c 
discovery. For lack of data, I have not addressed the role of another kind of nonverbal 
representation that is important for human thinking—emotion (see # agard, 2006, 
2010a). I would conjecture that every one of the 100 discoveries generated a strong, 
positive emotional response in the discoverer, just like Archimedes’ famous Eureka! 
moment when he discovered the principle of buoyancy. # agard and Stewart (2011) 
give an account of the neural processes that might generate such treasured moments.
# is study has also generated interesting data about the extent to which discov-

ery is accidental, analogical, theoretical, observational, and dependent on instru-
ments. # ese data must be viewed as highly tentative, since they are based on brief 
accounts of one author and background knowledge of one interpreter. I hope they 
will serve to stimulate further systematic research on a larger sample of scienti! c 
discoveries that are examined in much more depth. Let us now compare scienti! c 
discovery with a similar survey of cases of scienti! c invention.

STUDY 2: TECHNOLOGICAL INVENTION

Previous investigation based on a few examples has suggested that invention of 
new technologies involves the same basic set of cognitive processes of scienti! c 
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6 discovery (Saunders and # agard, 2005; # agard and Cro' , 1999). Both invention 

and discovery require basic cognitive processes such as problem solving, analogical 
inference, and concept generation. But a study of a large number of inventions also 
turned up some interesting cognitive di% erences.

For my sample of inventions, I used 100 Greatest Inventions of All Time by an 
experienced non! ction writer, Tom Philbin (2003). As with my discovery sample, 
the “greatest” assertion should not be taken too seriously, but there is no question 
that Philbin identi! ed many very important inventions, ranging from the wheel 
(#1) to the video recorder (#100). Unlike Haven, Philbin ranks the creations 1–100 
in order of importance, but it would be hard to defend his entire ordering. A few 
examples appear on both lists: anesthesia, X-rays, and the transistor. As with the 100 
discoveries, the analysis of 100 inventions should be viewed as highly provisional, 
since it may depend on both Philbin’s and my idiosyncrasies. . Still, preliminary data 
may help to point the way to future studies that are broader and deeper.

Tables 16.2–16.5 summarize the similarities and di% erences found between 
discovery and invention. As Table 16.2 shows, all inventions, like all discoveries, 
involved verbal representations. # is unanimity may be an artifact of the need for 
people (including the creators as well as commentators such as Philbin) to use lan-
guage to report their discoveries to others, but inspection suggests language may 
well have played a role in all cases. For example, the invention of the wheel plausibly 
had a substantial nonverbal component owing to visual and kinesthetic representa-
tions of crucial ingredient concepts such as log and rolling, but these concepts have 
verbal representations as well.

It is striking in Table 16.1 that visual representations seem to be much more com-
mon in the sample of inventions than in the sample of discoveries. # e reason for 
this di% erence is probably that most inventions are things that people can see: the 
wheel, lightbulb, computer, and so on. Hence people naturally have visual represen-
tations of them. For the same reason, inventions are more susceptible to other non-
verbal representations such as touch, heat, kinesthesia, and sound. Mathematical 
representations were much less common for discoveries than for inventions, 26 
rather than 46. # is discrepancy may re" ect the fact that Philbin had many more 
early examples than Haven, including 10 inventions before the Christian era in con-
trast to only 1 discovery that early. Cases such as the plow, sail, and bow and arrow 
are clearly important inventions, but the frequency of mathematical representations 

Table 16.2 Kinds of representation used in scientifi c discovery and technological 

invention

Verbal 
representation

Visual 
representation

Mathematical 
representation

Other kind of 
representation

Scienti! c 
discovery

100 41 46 5

Technological 
invention

100 87 26 48
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would have increased if Philbin had included many more recent science-dependent 
examples.

Table 16.3 summarizes aspects of novelty in discovery versus invention. All 
invention, like all discovery, generates new propositions, minimally of the form: # is 
device serves to perform that function. Unlike discoveries, many of which do not 
introduce new concepts, all the inventions involved the introduction of new con-
cepts. # e di% erence again arises from the fact that all inventions are things, and the 
selected kinds were clearly important enough to warrant naming. Inventions seem 
to have occurred much less accidentally than discoveries, 5 versus 26, since inven-
tions are usually the result of an intentional e% ort to solve some identi! ed problem. 
Nevertheless, there are a few interesting cases of inventions such as anesthesia and 
X-ray machines that arose accidentally: Davy was not looking for a way to kill pain, 

Table 16.3 Kinds of novelty in scientifi c discovery and technological invention

New 
propositions

New 
concepts

Accidental Analogical

Scienti! c discovery 100 60 26 14

Technological invention 100 100 5 12

Table 16.4 Analogies in technological inventions

INVENTION TARGET SOURCE MODALITY DISTANCE

Printing press Printing Olive press Visual, kinesthetic Long

Telephone Telephone Ear Visual, sound Long

Paper Bark paper Hemp paper Visual, touch Local

Airplane Airplane Bird Visual Long*

Stethoscope Stethoscope Wood Sound Long

Microscope Microscope Eyeglasses Visual Local

Braille Braille Previous dots Touch Local

Incubator Baby incubator Chick hatchery Visual, heat Long*

Co$ on gin Co$ on 
machine

Hand move-
ments

Visual, kines-
thetic

Local

Windmill Windmill Sail Visual Long

Washing 
machine

Machine Hand 
movements

Visual, 
kinesthetic

Local

Oil derrick Oil Gallows Visual Long
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and Roentgen was not looking for a way to examine bones. I was struck, however, 
by the highly incremental nature of invention, with many new technologies being 
part of a whole series of improvements in a$ empts to accomplish some task such as 
building a be$ er lightbulb. According to Philbin’s descriptions, 71 of the inventions 
were incremental in this way, whereas the scienti! c discoveries seemed to involve 
more dramatic leaps.

It would be interesting to determine by more detailed historical examination 
whether these incremental examinations can be viewed as cases of analogical infer-
ence, using past inadequate inventions as source analogs to develop new, improved 
targets. # at ! nding would increase dramatically the occurrence of analogies in 
invention, which at 12% is a bit less than the 14% for discovery. Table 16.4 dis-
plays the analogies identi! ed for technological invention. As with discovery, anal-
ogy seems to have been an important cognitive process in invention, but is far from 
being universal. All the inventive analogies plausibly have a nonverbal component. 
# ere are proportionately more local analogies than I found in discovery (5/12 vs. 
2/14). Two of the long-distance analogies indicated by an asterisk were originally 
cross-domain but rede! ned the nature of domains so that we can now view them 
as the same domain. For example, before the Wright brothers used what they knew 
about birds to inform airplane construction, birds and " ying machines were di% er-
ent kinds of objects, but now are uni! ed under the general theory and practice of 
aerodynamics.

Finally, Table 16.5 shows an interesting di% erence between the theoretical and 
observational status of discoveries and inventions. I counted 76 of the inventions 
as observational in that they were made using ordinary human senses, with only 
24 requiring theoretical leaps beyond observation. Many of these theory-based 
inventions were electrical devices such as the telephone. Instruments for measur-
ing the e% ects of theoretical entities were undoubtedly important in many of these 
inventions, but none seemed to be based just on instrumental observations without 
a large theoretical contribution.

Comparison of discovery and invention raises interesting questions about the 
relation of science to technology. I found 37 cases of scienti! c discoveries that 
depended on preceding technological developments such as the telescope and spec-
tograph. Moreover, at least 21 of the discoveries led to new technologies such as 
radio and the atomic bomb. Surprisingly, looking at inventions I only identi! ed 9 of 
Philbin’s cases as depending on prior scienti! c discoveries, and only 3 as generating 
new scienti! c discoveries. Perhaps these low numbers result from Philbin’s assess-
ment of “greatest” in terms of everyday usage rather than scienti! c importance. 

Table 16.5 Theory and observation in discovery and invention

! eoretical Observational Instrumental

Scienti! c discovery 70 18 12

Technological invention 24 76 0
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A sample of 20th-century inventions would probably display a much stronger 
interconnection of technology and science more in accord with the ! ndings from 
Haven’s 100 discoveries.

OBJECTIONS TO COMBINATION

My survey of 200 examples of scienti! c discovery and technological invention did 
not turn up any counterexamples to the combinatorial conjecture, but there are 
other ways in which that conjecture might turn out to be false. # is section consid-
ers three: abstraction, mutation from single representations, and (most radically) 
creativity that does not at all rely on mental representations. I have already argued 
that serendipitous perception in cases such as the coelacanth and penicillin are actu-
ally cases that con! rm rather than refute the combinatorial conjecture.

Welling (2007) discusses four creative processes: application of existing knowl-
edge, analogy, combination of concepts, and abstraction. # e ! rst three of these 
clearly involve combinations of representations, but what about the fourth, abstrac-
tion? According to Welling (2007, p. 170):

The mental process of abstraction may be defi ned as: the discovery of any structure, 
regularity, pattern or organization that is present in a number of different percep-
tions that can be either physical or mental in nature. From this detection results the 
product abstraction: a conceptual entity, which defi nes the relationship between the 
elements it refers to on a lower, more concrete, level of abstraction.

To illustrate abstraction, Welling uses Piaget’s example of children learning the con-
cept of weight by abstraction of experiences of objects that are heavy and light. He 
speculates that children and other learners use Gestalt principles of perceptual orga-
nization such as grouping and closure.

Without a more detailed model of how abstraction works, it is di&  cult to assess 
whether it constitutes a challenge to the combinatorial conjecture. It does seem, 
however, that abstraction requires the combination of perceptual representations, 
for example the physical, kinesthetic sensations involved in assessing an object as 
heavy or light. I conjecture that when children learn the abstraction weight they put 
together a combination of verbal and nonverbal representations of experiences of 
heavy objects and light objects. If there are any cases of abstraction that are not com-
binatorial in this fashion, I expect that they are not particularly creative according to 
Boden’s criteria of being new, surprising, and valuable.

Another kind of possible counterexample to the combinatorial conjecture would 
be if creativity arose from a kind of mutation in a single concept, analogous to the 
way that mutations occur in genes. Although various authors have a$ empted to 
exploit an analogy between genetic mutation and concept generation (e.g., Dawkins, 
1976), I think this analogy is feeble from a cognitive perspective (# agard, 1988, 
Chapter 6). # inking is much more structured and constrained than biological evo-
lution. In particular, no one has ever identi! ed an interesting case of creativity aris-
ing from a random alteration in a single concept analogous to mutation in a single 
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0 gene. Conceptual combinations occur in a much more focused way in the context of 

problem solving and hence are a much more plausible mechanism of creativity than 
single-concept mutations. See the Appendix for further analysis of why discovery 
and invention do not result from blind variations.

My analyses and arguments in defense of the combinatorial conjecture may 
suggest to the reader that the claim is true but trivial, making no substantive asser-
tion. Response to the charge of triviality can be made ! rst by pointing to the neu-
rocomputational theory of combination that proposes a detailed neural mechanism 
for combining representations using convolution (# agard & Stewart, 2011). # is 
theory shows that the conjecture can be " eshed out into a speci! c claim about the 
cognitive and emotional processes that underlie human creativity. Second, the non-
triviality of the combinatorial conjecture is evident from serious theories that deny 
a theoretical role for representation altogether. If there are no mental representa-
tions, then creativity is obviously not the result of combining them.

Denial of mental representations was a hallmark of behaviorism, which dominated 
American psychology until the cognitive revolution of the 1950s. It has been revived 
in a movement espousing “radical embodied cognitive science” that draws on a com-
bination of Heideggerian philosophy, Gibsonian psychology, and dynamic systems 
theory to propose an alternative to the dominant computational-representational 
view of thinking (see, e.g., Chemero, 2009; Clark, 1997; Dreyfus, 2007; # ompson, 
2007; Warren, 2006). If radical embodiment is true, then creativity does not require 
combining representations at all: It can be “action-! rst” rather than “thought-! rst” 
(Carruthers, 2011). # en the combinatorial conjecture would be false.
# ese extreme embodiment claims need to be distinguished from more mod-

erate ones made by researchers such as Gibbs (2006) and Barsalou et al. (2003), 
who maintain that the kinds of representations and computations performed by 
the brain are closely tied to bodily processes such as perception and emotion. My 
account of neural representation is su&  ciently broad to encompass a wide range of 
perceptual modalities, all of which can be understood as pa$ erns of activation in 
populations of neurons. # e body also plays a large role in my account of emotion 
(# agard, 2010a; # agard and Aubie, 2008). Hence I am happy to endorse a moder-
ate embodiment thesis that acknowledges the importance of perceptual and other 
physiological processes (# agard, 2010b). # is moderate thesis is fully compatible 
with the combinatorial conjecture as long as cognition is not mistakenly restricted 
to only language-like representations.

So why does cognitive science, and particularly the theory of creativity, need 
representations? # e answer is that postulation of various kinds of representations 
currently provides the best available explanation of many kinds of human think-
ing, including perception, inference, learning, problem solving, and language use 
(see e.g. Anderson, 2010; Smith & Kosslyn, 2007; # agard, 2005). Proponents of 
the extreme embodiment thesis have barely scratched the surface in matching the 
explanatory successes of the computational-representational approach. Indeed, it 
can be argued that even the basic problem of motor control is too complex to under-
stand without postulating representations and computations (# agard, 2010b; 
Todorov & Jordan, 2002; Wolpert & Ghahramani, 2000). Abilities such as grasping 
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objects require building complex mental models to predict the e% ects of various 
kinds of muscular operations.

More speci! cally, no one has a clue how to use pure embodiment to explain 
creative developments in science and technology. Discoveries such as relativity 
theory and inventions such as the telephone require the full range of human repre-
sentational capacities, from verbal and mathematical to more obviously embodied 
representations such as vision and sound. Humans are indeed embodied dynamic 
systems embedded in their environments, but our success in those environments 
depends heavily on our ability to represent them mentally and to perform com-
putations on those representations. Hence the embodied aspect of much of men-
tal cognition does not refute the combinatorial conjecture, although the claims 
of radical embodiment do serve to show that the conjecture is a substantive one 
about human creativity.

According to Arthur (2009), new technologies arise as combinations of other 
technologies, and he even talks about how “technologies modify themselves over 
their lifetime” (p. 87) and describes technology as “self-producing” (p. 170). 
Obviously, however, past technologies have not had the capability to actually com-
bine or modify themselves, although in the future more intelligent machines may do 
so (Lipson & Pollock, 2000). Rather, new technologies from wheels to iPads have 
resulted from the combination of human mental representations of previous tech-
nologies. Technological creativity is a physical process of interaction with the world, 
and a social process of interaction with other people. But it is also a psychological 
process carried out by brains that are capable of computationally modifying rep-
resentations through such mechanisms as visualization, conceptual combination, 
analogy, and inference in general.

CONCLUSION

# e two studies in this chapter have found support for the combinatorial conjec-
ture in 200 examples of discovery and invention, but do not address whether it 
holds in other domains of human creativity. It should not be too hard to apply the 
conjecture to social innovation, which concerns the creation of new organizations, 
institutions, and practices that bene! t human society. Innovations such as demo-
cratic government, public education, pension plans, universal health care, and 
international governance have contributed greatly to the quality of human lives, 
and I expect to show that all of these resulted in part from the combination of rep-
resentations. My guess is that social innovation will turn out to be more like tech-
nological invention than like scienti! c discovery, except for a reduced contribution 
of representations that are visual.

More di&  cult will be assessment of the applicability of the combinatorial con-
jecture to the great many examples of creativity resulting from artistic imagination, 
including poems, plays, novels, ! lms, music, dance, and architecture. Examination 
of even a few examples from these categories will require a$ ention to many kinds of 
representation beyond the verbal, such as emotion in poetry, vision in ! lm, sound in 
music, and kinesthesia in dance and sculpture. I expect that scrutiny of such examples 
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2 will serve not just to con! rm the combinatorial conjecture but also to " esh it out with 

greater understanding of the kinds of representations and processes that contribute to 
human creativity. Also needed is a general theory of how newly generated represen-
tations are evaluated for their coherence with other representations and overall value.

Although my analysis of 200 examples has been highly provisional and needs to 
be supplemented by a deeper and broader study, it has helped to characterize repre-
sentational aspects of creativity along such dimensions as mode of representation, 
role of accident and analogy, and relative contribution of theory and observation. 
I would like to see the development of an Atlas of Creative Science and Technology, 
which would contain not only historical descriptions of great discoveries and inven-
tions, but also their assessment with respect to the kinds of cognitive factors identi-
! ed in this chapter. Creativity is combination of representations, but there is much 
more to be learned about the nature of these representations and the cognitive pro-
cesses that produce them.
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CHAPTER 16 APPENDIX: BLIND VARIATION

Simonton (2010, Chapter 15, this volume) has a$ empted to revive the idea of blind 
variation in creativity, but I think his mathematical analysis does not go to the heart 
of the ma$ er. Here is an alternative.

Let V be the set of variants that can arise in a set of structures such as genes, 
mental representations, machines, and so forth. V will be very large, but not in! nite, 
as biological and physical entities are ! nite. # e variants can be numbered V1 . . . Vk, 
with Vi indicating some speci! c variant.
# en we can de! ne Gi as the generation of variant Vi, and Ui as the utility of Vi. 

I propose that a variant is blind if its generation is independent of its utility, that is, 
the probability of generation given nonzero utility is the same as the probability of 
its generation if it were useless:

Vi is blind i%  P(Gi/Ui > 0) = P(Gi/Ui = 0).

# en we can say that a process of variation is overall-blind if every variant in it 
is blind. Genetic mutation is overall-blind, but scienti! c discovery, technological 
invention, and other forms of human creativity are overwhelmingly not, because 
psychological processes of problem solving and representation generation focus 
thinking toward variants that are more useful than random ones.
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A quantitative approach has the advantage that we can talk about degree of blind-
edness, which is the extent to which variants in a process are blind:

Blindedness = # of blind actual variants/# of actual variants.

My survey of 100 scienti! c discoveries and 100 inventions suggests that the 
blindedness of these processes is near 0, although the di&  culty of assessing the rele-
vant probabilities and utilities makes it hard to say. Many discoveries (but hardly any 
inventions) have an unintentional component, but even in these cases it seems that 
more useful variants are more likely to be generated than useless ones. For example, 
Galileo never intended to ! nd the moons of Jupiter when he turned his new tele-
scope on the heavens, but his interests, background knowledge, and cognitive pro-
cesses made it more probable that he would generate the representation “Jupiter has 
moons” than some u$ erly useless representation such as “Rome has toes.” Hence 
discovery is not blind, and biological evolution is a poor model for scienti! c discov-
ery and other kinds of creativity.
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