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Abstract One of the most impressive feats in robotics was the 2005 victory by a

driverless Volkswagen Touareg in the DARPA Grand Challenge. This paper dis-

cusses what can be learned about the nature of representation from the car’s

successful attempt to navigate the world. We review the hardware and software that

it uses to interact with its environment, and describe how these techniques enable it

to represent the world. We discuss robosemantics, the meaning of computational

structures in robots. We argue that the car constitutes a refutation of semantic

arguments against the possibility of strong artificial intelligence.

Keywords Robotics � Representation � Semantics � Intentionality �
Bayesian networks

Introduction

In 2005, a driverless Volkswagen Touareg sports utility vehicle won the DARPA

Grand Challenge, a race for autonomous robots over a difficult 131-mile course in

the Mojave Desert (DARPA 2005). The winner was developed by a team from the

Stanford University Artificial Intelligence Laboratory, who called their vehicle

Stanley. The magazine Wired (2006) declared Stanley the best robot of all time, and

the self-navigated completion of the difficult course was certainly one of the major
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robotic feats to date. Stanley’s success is the result of great sophistication in both

hardware and software, including multiple instruments for sensing its environment

and advanced programs for making inferences about its location and direction.

We aim to examine what can be learned about the nature of representation from

Stanley’s successful attempt to navigate the world. After a brief review of the

hardware that Stanley used to interact with its environment, we discuss the software

that enabled it to identify relevant features of the world and to plan an effective

course using dynamic Bayesian networks and machine learning algorithms. We then

describe how these techniques enabled Stanley to represent the world, and discuss

what they tell us about robosemantics, the meaning of computational structures in

robots. We also show that Stanley constitutes a refutation of semantic arguments

against the possibility of strong artificial intelligence.

Stanley’s Hardware and Software

Stanley was a diesel-powered Volkswagen Touareg R5 whose throttle, brakes, and

steering were electronically controlled (Thrun et al. 2006). It perceived the world by

means of sensors mounted on a roof rack which held five laser range finders, a color

camera, and two antennas of a RADAR system, all pointed forward. Other antennas

are used for GPS (global positioning system) and DARPA’s system for stopping

vehicles in an emergency. Stanley’s trunk contained six Pentium M computers

that were connected to each other, to the physical sensors, and to the actuators for

throttle, brakes, and steering. The computers served to integrate all the information

from the various sensors, determine Stanley’s location, infer what obstacles lie

ahead, and instruct the vehicle to drive at a manageable speed in the appropriate

direction.

The director of the Stanford Artificial Intelligence Laboratory is Sebastian Thrun,

co-author of an elegant recent textbook on probabilistic robotics that describes many

of the computational techniques used in Stanley (Thrun et al. 2005; for a more

elementary introduction, see Russell and Norvig (2003, Chap. 25), which was mostly

written by Thrun). Robots need statistical techniques to deal with uncertainty because

their environments are unpredictable, their sensors are limited, their actuators such as

motors are not completely reliable, the internal models developed by their software

are only approximate, and their computations are limited by time constraints.

In the Stanford approach to robotics, the primary technique for dealing with

uncertainty is based on the Bayes filter, a method of representing beliefs over time

as probability distributions over possible states. The state of a robot can be captured

by a collection of variables that stand for its location, orientation, velocity,

configuration of actuators, and features of objects in its environment. For a rigid

mobile robot, location and orientation can be represented by six numerical

variables: three for Cartesian coordinates relative to a global frame, and three for

pitch, roll, and yaw. Other variables stand for measurements performed by sensors

and for control actions carried out by the robot.

While the details of Bayes filtering (and its usual implementation, Kalman

filtering) are beyond the scope of this paper, we can describe some of the
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representational underpinnings using a simple model, the dynamic Bayes network.

Essentially, a Bayes network is a graph in which each node is a variable that can

take on a range of values (such as a robot’s state). The relations between nodes are

the conditional probabilities that connect the variables, and the function of a

dynamic Bayes network is to use available evidence to update these probabilities

over time. Figure 1 shows how a collection of measurement variables, u, influences

a collection of state variables, x, which influences a collection of control variables,

z. We use Bayes’ theorem to estimate the state at time t, which in turn influences

the state at time t + 1. In practice, Stanley was implemented using an unscented
Kalman filter (UKF), an efficient method of probability estimation based on similar

principles to those described here. In sum, a Stanford probabilistic robot is a

machine that uses Bayes’ theorem to repeatedly make inferences about its current

state.

Stanley had three different sensing modalities: laser, vision and RADAR. The

laser system had a range of approximately 25 m, which is only adequate for low

speeds. In contrast, the vision and RADAR systems were good for a range of up to

200 m, but provided much coarser information than the laser measurements.

Measurements from these sources were used to detect obstacles by functions

determined by a machine learning algorithm that used human driving for training.

The vision processing module was a Bayes network that used online machine

learning to adapt continually to different terrain types. Data from all sensors were

integrated into a drivability map, which is a single model of the environment that

marks each cell in a two-dimensional map as either unknown, drivable, or

undrivable. This information, along with other variables for the general condition of

the environment such as terrain slope, are used to set the driving direction and

velocity of the vehicle, which in turn control the steering, throttle, and brake. With

six fast computers, Stanley was able to update its localization up to 100 times/s,

update its visual discrimination of road from obstacles 8–75 times/s, and generate

steering and velocity controls 20 times/s. Much more detail about how Stanley

moved from measurements to actions is available elsewhere (Thrun et al. 2005,

2006). At the conclusion of this paper, we will briefly compare Stanley with the

winner of the 2007 DARPA Urban Challenge, a Chevy Tahoe from Carnegie

Mellon University.

xt xt+1
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Fig. 1 Dynamic Bayes network
that characterizes the evolution
of measurements u, states x, and
controls z. Based on Thrun et al.
(2005, p. 25)
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Meaning

We take Stanley’s success at autonomously navigating a complex environment to be

prima facie evidence that its representations are meaningful, but we will not attempt

to review the many competing philosophical theories of meaning (see e.g. Cummins

1989). Instead, we will adapt the ‘‘neurosemantics’’ theory of Eliasmith (2005),

who proposes a representational framework based on the abilities of neurons. This

semantic theory is connected to a rich neurocomputational account of how brains

encode, decode, and transform information (Eliasmith and Anderson 2003;

Eliasmith 2003). Eliasmith (2005, p. 1044) presents a four-place schema for

defining a representation:

A fvehicleg represents a fcontentg regarding a freferentg
with respect to a fsystemg:

He proceeds to explain how neural systems fit each of these components in order

to give us mental meaning, and we will perform a similar analysis for Stanley.

Systems

For human mental representation, the system is typically considered to be the

person, that is, the natural biological system of the human being. For robots, we are

concerned with how representations arise, how they are stored, and how they are

used, so we consider the entire information processing system of the robot. For

Stanley, these included sensors, processing units, data storage, and the actuators that

control the SUV’s movements.

Vehicles

In Eliasmith’s account, vehicles are internal states of physical objects that carry

representational contents (in what follows, we shall use ‘‘vehicle’’ in this sense

rather than the automotive one). It is important to distinguish vehicles from

contents: in the human brain, the vehicles are neurons and groups of neurons, and

contents are the properties that they ascribe to the world. Because the job of the

probabilistic robot is to ascribe properties to the world by computing values for

variables, its vehicles are the states of computer chips that store conditional

dependence relationships, values for variables, and perform Bayesian updating.

Referents

Referents are the entities in the world that representations are about. In human

mental states, referents are actual dogs, buildings, and so on—the targets of

thinking. Since robots operate in the same world as people do, it is desirable that

they share the same possible referents. For a robot like Stanley, some important

referents are the landscape, obstacles, other vehicles, and the path through the

landscape. According to Eliasmith (2005, p. 1046), the referent of a vehicle is the

set of causes that has the highest statistical dependence under all stimulus
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conditions. Stanley was causally connected to the world by its three kinds of visual

sensors (laser, camera, RADAR) and by the GPS and inertial system used for

localization. Thus the referents for its localization variables are Stanley itself and its

place in the world, and the referents for variables representing features of the

environment are the objects in the world that cause laser, light, and RADAR beams

to be reflected back to the sensors.

Contents

In Eliasmith’s theory of neurosemantics, the content of a representation is the set of

properties of the referent encoded by the vehicle. It is obviously not possible for

robots or humans to represent every possible aspect of something in the world.

Drawing information from the world requires filtering and encoding performed by the

vehicle. For a robot, filtering begins with the sensors. A radar unit, for example, will

extract the distance to a solid obstacle at various angles around the robot. A camera,

on the other hand, will sense the visible light reflected off of the surroundings. Both

sensors observe the same referent, the landscape, but extract different properties of it.

In a Kalman filter, content is captured by the values of different variables. A

robot will construct maps of its terrain and action plans about where to go and how

to get there. Each of these contents has a probabilistic component, and is merely a

subset of the possible properties of the outside world.

In sum, the semantic capability of a Stanford probabilistic robot fits comfortably

into Eliasmith’s four-place schema:

A fKalman filter running on computer chipsg represents

fstatistical propertiesg regarding an fenvironment featureg with

respect to a frobot’s information-processing systemg:
The neurosemantic view defines how each component of representation can be

satisfied by a neural system. For each of these components necessary for

representation, an analogue exists in Stanley.

Misrepresentation

Sophisticated representational systems are capable of making mistakes (Dretske

1995). My own visual faculties are generally good enough that when I think I am

looking at a dog, it really is a dog. As proud as I am of this fact, this miracle of

perception occasionally breaks down. Late at night in a fog-shrouded park, raccoons

look like dogs, shadows look like people, and I am frequently confused.

Stanley had similar problems. Perception is a notoriously difficult problem to

solve in robotics, and Stanley’s laser and vision systems were by no means perfect.

One prominent example comes from the way Stanley uses its laser rangefinders to

judge the terrain directly in front of the car. A rotating laser sweeps the ground in an

arc several meters ahead, and the rangefinder computes depth information along that

arc. As the car moves forward, it pushes the arc like a broom, combining the

information from multiple sweeps to create a three-dimensional map. However, this
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process depends on the car’s stability, because when the car pitches forward over a

bump, the laser rescans a previous area, and then skips far ahead. This puts the scan

lines out of sequence, making the rangefinder perceive a large, impassable obstacle

(Thrun et al. 2006). Consequently, Stanley would carry out often dangerous

avoidance maneuvers for an obstacle that never existed. The problem was

eventually solved using better machine learning techniques, but the important

lesson remains: since the perceptual system can ascribe the wrong properties to

whatever lies in front, Stanley is capable of misrepresentation.

Beyond the Chinese Room

Stanley’s ability to represent and misrepresent the world provides a decisive

counterexample to John Searle’s notorious argument that digital computers are

inherently incapable of intelligence. Here is his most recent version (Searle 2004,

p. 90; see also Searle 1980, 1992):

Imagine that I am locked in a room with boxes full of Chinese symbols, and I

have a rule book, in effect, a computer program, that enables me to answer

questions put to me in Chinese. I receive symbols that, unknown to me, are

questions; I look up in the rule book what I am supposed to do; I pick up

symbols from the boxes, manipulate them according to the rules of the

program, and hand out the required symbols, which are interpreted as answers.

We can suppose that I pass the Turing test for understanding Chinese, but, all

the same, I do not understand a word of Chinese. And if I do not understand a

word of Chinese on the basis of implementing the right computer program,

then neither does any other computer just on the basis of implementing the

program, because no computer has anything that I do not have.

Searle thinks that a computer operates purely syntactically with uninterpreted

symbols, whereas the human mind attaches meaning to the symbols.

As Holyoak and Thagard (1995) noted, Searle’s thought experiment is an

argument from analogy: just as Searle in the Chinese room does not understand

Chinese, so computers are incapable of understanding anything. Analogical

arguments have force only if they point out similarities between the source and

target analogs that are relevant to the conclusion. Figure 2 makes clear the structure

of the analogs in Searle’s thought experiment, which works fairly well for the type

of computer that people today have sitting on their desks. People type into their

computers and get output back from their screen, and even if the computer is

running a sophisticated artificial intelligence program it is legitimate to say that the

computers, like Searle in the Chinese room, do not on their own attach meaning to

their symbols.

However, Stanley was a very different machine from personal computers.

Figure 3 shows how far Stanley goes beyond the analogs in Searle’s thought

experiment. Stanley as a system is different from the Chinese room and the personal

computer because its sensors and control actions give it ongoing causal interactions

with the world, many times/s. Stanley’s computer chips are vehicles for representing
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the world in the same way that human neurons are, because of the causal, statistical

dependencies between their operations and what goes on in the world.

Searle’s reply to the claim that robots show the possibility of a computer having

meaningful symbols is a modified version of his thought experiment. Suppose that

the Chinese room is placed inside a robot so that the input comes from a television

camera and the output contains motor instructions. There may even be statistical

causal dependencies between the person’s manipulation of symbols and the

television input and motor output that provide connections to the world. Searle

maintains that nothing has changed, in that the person in the room is still processing

meaningless symbols, so by analogy the robot’s CPU is also.

However, Searle’s analogy is defective. Stanley’s probabilistic variables may

lack meaning when considered only in relation to its six CPU’s, but are meaningful

when considered with respect to the robot’s whole information processing system,

including its sensors that generate statistical properties regarding features of the

environment. To see how this works, consider the Chinese room to be an analogy

for something we already know to have meaningful content: the human neurobio-

logical system. If we use the robot version of the Chinese room, then the

correspondences are quite straightforward. The robot’s input corresponds to the

human sensory-perceptual system, including visual and auditory areas of the cortex,

and so on. The robot’s output matches up with cortical motor areas, the cerebellum,

Symbols
input

Symbols
output

Searle

Rule book

Chinese room

Typed 
input

Screen
output

CPU

Memory

Personal computer

Fig. 2 Searle’s analogy between the Chinese room and computers. CPU is the central processing unit of
a digital computer

World

Sensor
input

Control
actions

CPUs running 
Bayes

Memory storage

filters

Fig. 3 Stanley’s systematic relations to the world
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and the musculoskeletal nerves. The rule book is simply memory, instantiated in the

hippocampus and neocortex. Now where is the man in the room? In the thought

experiment, the man is a control center, carrying out rules for manipulating

symbols. To correspond, we might choose the dorsolateral prefrontal cortex, a major

site for executive functions including working memory. This area takes neural

spikes as input, performs some transformations, and passes neural spikes as output.

All that the region sees are spikes, which are meaningless for it alone. Thus by

Searle’s argument, it might seem that brains cannot have meaningful symbols,

contrary to his own assumptions. But brains, of course, rely not just on a single

region for central processing, but many regions including ones dedicated to

processing sensory information. Similarly, Stanley uses multiple CPUs interacting

with each other and multiple sensors.

Thus Stanley’s abilities undermine Searle’s argument. The robot’s Bayesian

networks give it representational power. Sensory inputs give Stanley’s represen-

tations statistical causal dependencies with the world, assigning the representations

content with respect to the system. Furthermore, Stanley’s performance in the real

world is evidence that the content works. Because Searle’s analogy with the Chinese

room is defective, and because Stanley’s performance in the world is so successful,

we have reason to attribute meaning to Stanley’s symbols, the variables and links in

its Bayes networks. Their meaning does not derive simply from the programmers

who wrote the C code for Stanley’s computers, but also from ongoing interactions

with the world and with ongoing machine learning that make possible Stanley’s

effective operations.

Shani (2005) has attempted to supplement Searle’s thought-experimental

argument against robot intentionality with another argument derived from the work

of Mark Bickhard (e.g. Bickhard and Terveen 1995). Shani contends (2005, p. 220)

that ‘‘mental structures cannot function as representations, cannot be intrinsically

informative, in virtue of the fact that they encode whatever it is they encode’’. But

we argued above that Stanley’s representations had referents in just the same way

that human brains do, by having high statistical dependence under all stimulus

conditions. If such causal relations are sufficient for neurosemantics, they should

also be sufficient for robosemantics.

Conclusion

Despite its impressive navigational accomplishments, Stanley fell far short of

human-level intelligence. It has no capability of processing natural language, and no

one would claim it has consciousness. Its problem solving ability is less than a

cockroach, which can not only navigate a complex environment but also find food,

mate, and avoid being stomped. Nevertheless, there was dramatic progress between

the 2004 DARPA Grand Challenge, when none of the robotic vehicles managed to

complete the course, and the 2005 challenge, when four other vehicles completed

the course after Stanley, using a variety of kinds of hardware and software (see the

technical reports available at DARPA 2005). These impressive achievements were

repeated 2 years later in the 2007 DARPA Grand Challenge, which required
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autonomous vehicles to complete a 60-mile urban course safely, obeying traffic

laws, in less than 6 h. Six vehicles completed the difficult course, led by Carnegie

Mellon University’s Tartan Racing Team. Stanford placed second.

Carnegie Mellon’s 2007 winner was a Chevy Tahoe called Boss. Like most of the

2007 competitors, it used a powerful new laser sensing technology produced by

Velodyne, consisting of a spinning unit with 64 lasers firing thousands of times/s.

To interpret sensory information, it used similar kinds of probabilistic filtering

techniques employed by Stanley and many earlier robots. Boss and most of its

competitors translated sensory information into discrete rules for guiding action.

Such translation was necessary because urban traffic is governed by precise rules of

conduct, unlike the less constrained desert navigation in the 2005 competition. Boss

had more computing power than Stanley, with 10 computers containing 20 CPUs. It

took months of testing to get Boss ready for the Urban Challenge, including

considerable tuning of software by Boss’s programmers but also use of machine

learning algorithms to improve its interpretation of sensory inputs (Paul Rybsky,

personal communication, Feb. 22, 2008).

Thus Stanley’s Bayes network software is not the only way of building robots,

and it is debatable whether the human brain is similarly Bayesian. Obviously, the

brain is a sophisticated processor of statistical information, but that does not imply

that it uses the particular machinery of Bayes networks: directed acyclic graphs

obeying crucial conditions about probabilistic dependence. Some psychologists

think that the human mind incorporates Bayes networks (Gopnik et al. 2004), but

others are skeptical (Rehder and Burnett 2005). One of the advantages of looking at

robots is that we know how Stanley was built to learn about and to interact with the

world, and probabilistic reasoning is a central part of its design. We have described

how they enabled Stanley to represent the world in ways that derive from its own

sensing, acting, inference and learning capabilities, not just those of its initial

programmers.

Philosophers use the term intentionality for the human capability of having

internal representations that are about the world. If you are wondering whether

robots can have intentionality, the reasonable answer is: they already do.
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