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Abstract

We present a biologically realistic spiking neural model that
provides a broad-ranging mechanistic description of the
human reward system. We introduce a novel conception of
the role of affective arousal in stimulus valuation, and
describe a dopamine-serotonin opponency in reward
prediction error that influences both cognitive planning and
emotional state. The model provides a neurological
explanation of loss aversion in humans, and suggests
particular mechanisms by which serotonin influences
affective appraisal and risky behavior. Specific empirical
predictions of the model include a correlation between
amygdala serotonin receptor concentration and loss
sensitivity, as well as specialized impairments resulting from
several disconnection disorders. Our results provide a basis
for further exploration of the neuroscientific foundations of
economics, decision making and social cognition.
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Introduction

The reward system underlies the interactions between
motivation, affect and cognition that give rise to decision
making and goal-directed behavior. Understanding its
structure and operation provides insight into addiction,
preference and choice, and other complex environmental
interactions. Mounting experimental data continue to
elaborate the neural circuitry involved in the evaluation,
prediction and behavioral effects of reinforcing stimuli (e.g.,
Montague & Berns, 2002). In humans and higher-order
primates, much evidence indicates the involvement of such
brain regions as the amygdala, orbitofrontal cortex, ventral
striatum, anterior cingulate cortex, and dorsolateral
prefrontal cortex in reward processing and related goal
representation (as reviewed by McClure, York & Montague,
2004, and Schultz, 2000).

While identification of the key neural structures of the
reward system has been greatly advanced by recent imaging
and neurophysiological studies, the formulation of
mechanisms by which these brain areas might interact has
lagged behind this data accumulation. Theoretical work has

focused on modeling restricted subsystems, such as
dopamine-encoded reward prediction error (Schultz, 1998;
Suri, 2002) and reward association reversal in orbitofrontal
cortex (Deco & Rolls, 2005), rather than the large-scale
synthesis required for moving beyond task-specific
explanations to a more comprehensive neural theory of
motivated behavior. The model we present is a first attempt
at providing this kind of broad mechanistic description of
the human reward system. It integrates current ideas about
how different reward processing tasks are performed by the
brain in a precise and quantitative manner, and provides an
organizing basis for future experimental and theoretical
study of reward-related behavior.

A key outcome of this integration is a novel and detailed
neural basis for loss aversion. That people generally prefer
avoiding losses to achieving equal gains was convincingly
established by the landmark studies of Kahneman and
Tversky (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1991). A psychological dominance of losses is
thought to underlie many observed inconsistencies with
traditional economic theory, including asymmetric price
elasticity, downward-sloping labor supply and consumer
choice anomalies (e.g., Camerer, 2000). Our model offers a
biologically realistic neural explanation of a phenomenon
studied almost exclusively at the behavioral level.

In brief, we describe a modulation of reward valuation by
emotional arousal, influenced by stimulus saliency. This
modulated signal feeds into interacting opponent systems
for determining positive and negative errors in reward
prediction. The consolidation of this information about
valuation, saliency and relative surprise drives the planning
of stimulus-appropriate behavior. Finally, information
regarding behavioral relevance and prediction error feeds
back to modulate arousal level itself. Simulation results
suggest neural explanations for a wide range of phenomena,
such as loss aversion and the behavioral influence of
serotonin. Above all, our model demonstrates that diverse
data regarding the neural substrates of reward processing
can be successfully integrated, explaining activities and
behaviors that are themselves combinations of the observed
and theorized functions of these subsystems.
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Figure 1: Basic connectivity framework. Dotted arrows
represent external inputs to the model. Abbreviations: 5-HT,
dorsal raphe serotonergic neurons; ACC, anterior cingulate
cortex; AMYG, amygdala; DA, midbrain dopaminergic
neurons; DLPFC, dorsolateral prefrontal cortex; OFC,
orbitofrontal cortex; VS, ventral striatum.
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Figure 1 outlines the overall structure of our model. It
consists of 7600 spiking, leaky integrate-and-fire (LIF)
neurons in 7 distinct populations. Specifically, we use 800-
1200 neurons for simulating each of the amygdala,
orbitofrontal cortex, ventral striatum, anterior cingulate
cortex, and dorsolateral prefrontal cortex. The activities of
midbrain dopaminergic neurons and the dorsal raphe
nucleus of the brainstem are modeled with 1200-neuron
ensembles, each with several discrete subpopulations. We
employ the Neural Engineering Framework (NEF) of
Eliasmith and Anderson (2003) implemented through the
MATLAB-based neural simulation software NESim.

We will now describe the basic relations and activities
modeled for each brain area, and how they relate to the
generation of complex reward-related behaviors. A
complete description of our specific model equations and
neural parameters, sufficient for thorough analysis and
replication, is provided by Litt, Eliasmith and Thagard
(2006) and omitted here for reasons of space.

Arousal Modulation of Reward Valuation

A wide range of studies have implicated orbitofrontal cortex
in the evaluation of the rewarding nature of stimuli
(reviewed by Rolls, 2000). With myriad connections to
primary and secondary sensory areas, it is well-placed to
provide an integrative valuation of the rewarding or
punishing nature of external inputs. This valuation is
influenced by context (Schultz, 2000) as well as interactions
with neural structures involved in emotional processing
(Bechara, Damasio & Damasio, 2000). We propose that a
primary modulator of orbitofrontal reward valuation, which
may underlie both emotional and context-sensitive
influences, is the state of affective arousal of the individual,
which we model via activity in the amygdala.

The conventional association of the amygdala with the
processing of primarily aversive stimuli is being challenged
by a range of studies which indicate that it is the degree to

which a stimulus is arousing, rather than its valence, that is
related to amygdala activation (McClure, York &
Montague, 2004). Classic results can be reinterpreted as
showing that aversive stimuli are generally more arousing
than rewarding ones, perhaps because of increased
behavioral saliency. Negative feedback often induces an
individual to modify current behavior, demanding more
complex cognitive processing, such as plan formation,
which is not required in the case of positive feedback. This
may partially underlie the valence asymmetry in amygdala
activation. The finding of Adolphs and colleagues (2005)
that the impairment of fear recognition caused by amygdala
damage is due to abnormal negligence of the eye region of
faces also indicates an attentional role for the amygdala.

In this spirit, we look to theoretical models of attention in
developing our proposed interaction between the amygdala
and orbitofrontal reward valuation. Evidence from vision
research points to a multiplicative scaling effect of attention
on the observed saliency of visual inputs (e.g., Treue, 2001).
We thus propose a multiplicative modulation by arousal of
stimulus valuation in orbitofrontal cortex. Given V and 4 as
the neural representations of primary orbitofrontal valuation
and amygdala-encoded emotional arousal, respectively, we
model the modulated valuation output V*@#) = A1) V(1).
Thus, increased levels of arousal amplify stimulus valuation,
while lower arousal levels lead to signal attenuation.

Opponency in Reward Prediction Error

An extensive body of data implicates midbrain dopamine
neurons in reporting a reward prediction error that reflects
the discrepancy between actual and expected results (e.g.,
Schultz, 2000; Suri, 2002). The temporal difference (TD)
model (Sutton & Barto, 1998) is the dominant theoretical
approach for this computation, due to simplicity and good
correspondence to observed neural activity. TD computes
reward prediction error (E) based on the difference between
the latest reward valuation and a weighted sum of all
previous rewards (P). Using our arousal-modulated signal
V* as the input regarding current stimulus valuation, this
leads to the modeled equations E(?) = V*() - P(t- 1) and
P@t)=P(t-1)+ a-E(), where « is a learning rate constant
between 0 and 1. This is typically modeled by increasing
dopamine activity with positive prediction errors (that is,
getting more than expected) and firing rate depression for
negative errors (Schultz, 2000). While this has indeed been
observed within certain ranges, the capacity of dopamine to
work alone in this manner has recently been questioned.
Daw, Kakade and Dayan (2002) argue that low baseline
firing rates make a dopamine-only scheme unsuitable for
computing highly negative prediction errors. Indeed,
strongly aversive stimuli increase dopamine firing rates in a
manner inconsistent with the standard picture (Horvitz,
2000). Recent experiments show that, while dopamine
seems to encode positive prediction errors, this is not true
for significantly negative errors (Bayer & Glimcher, 2005).
Daw and colleagues propose serotonin innervation by the
dorsal raphe nucleus as working in interacting opponency
with midbrain dopamine, with each system reacting
primarily to aversive or appetitive stimuli, respectively.
Among the diverse effects of serotonin in the brain is



consistent evidence of responsiveness in aversive situations
(Deakin, 1983) and relatedly in behavioral inhibition, such
as withholding response when a shock is the expected result
(Soubrié, 1986). These roles seem naturally opposed to
those commonly ascribed to dopamine, and Daw, Kakade
and Dayan (2002) further outline direct physiological
evidence for opponency between these two systems.

Our modeled opponency simplifies that proposed by Daw
and colleagues. While this does not allow explanation of
some more complex findings (Horvitz, 2000), it still divides
positive and negative prediction error encoding, in line with
recent neurological results. Litt, Eliasmith and Thagard
(2006) present our specific opponent computations in the
midbrain and raphe. We consolidate these encodings in the
ventral striatum, which is also implicated in reward
prediction error processing (York & Montague, 2004).

A key advantage of opponent systems for positive and
negative reward prediction error is that we can distinctly
calibrate outputs from these systems to other brain areas.
Because prediction error is in effect a measurement of
surprise, we hypothesize that one target of such outputs is
the amygdala, which we describe as encoding arousal and
stimulus saliency. We thus model feedback to the amygdala
of the interacting opponent reward prediction error signals:
A(t) = Ay(t) + p-DA() + y-5-HT(t), A, being a base arousal
level determined by external factors unrelated to reward.
Importantly, the effects on arousal of positive and negative
surprises can be asymmetric (i.e., f#y). We explore the
implications of this asymmetry in our later discussion of
how our model explains loss-averse behavior in humans.

Conflict, Motivation and Behavior

Finally, we model the influence on behavioral planning of
the reward processing activities discussed so far. The
dorsolateral prefrontal cortex seems crucial for the planning,
representation and selection of goal-directed behaviors
(Hikosaka & Watanabe, 2000; Owen, 1997). The full extent
of these tasks undoubtedly involves not only reward
feedback but also information about body state,
environmental constraints and myriad other factors. We
restrict ourselves here to reward-related mechanisms of
influence on the development of appropriate action plans.

In this regard, research has focused on the role of the
anterior cingulate cortex in emotional consolidation,
detecting conflicts between current behavior and desired
results and interfacing with dorsolateral prefrontal (Bush,
Luu & Posner 2000). In particular, neural activity dubbed
error-related negativity (ERN) is vital for conflict detection
and mediation, triggering relevant modifications to behavior
planning in other cognitive areas (Brown & Braver, 2005).
Our model proceeds along similar lines, and also proposes
feedbacks to other stages of reward processing that help
explain psychological and neuroimaging results. We have
described elsewhere the precise mathematical nature of
these modeled relations (Litt, Eliasmith & Thagard, 2006).

The consolidation implemented in the anterior cingulate
merges ideas from the two dominant theories of neural
emotional processing: the approach-withdrawal model
(reviewed by Sutton, 2002) and the valence-arousal model
(Heller, 1993). The amygdala-modulated reward valuation

signal from orbitofrontal cortex is analyzed in the anterior
cingulate for an appropriate behavioral response: approach,
if the current input is valued positively; or withdrawal, if it
is considered aversive. We then modulate this behavioral
valence by reward-related surprise—that is, prediction error.
If a given behavior (approach or withdrawal) occurs
concurrently with a positive prediction error, the individual
is receiving encouraging feedback with regard to that
behavior, which should therefore be strengthened (or at least
maintained). Conversely, negative prediction error indicates
conflict: the behavior is not producing the expected result.
We model a consequent weakening of the behavior via
cingulate activity attenuation (Litt, Eliasmith & Thagard,
20006), as a new plan of action may need to be formulated.
Presumably, dorsolateral prefrontal cortex would use this
data (as well as inputs from other brain areas) in planning
and producing goal-directed behavior. While we do not
model this process, we propose another interaction between
this region and the cingulate. We propose a raphe-
dorsolateral-cingulate-amygdala pathway by which negative
prediction errors can further influence arousal. Physiological
support for this pathway is provided by Wilson and
Molliver (1991) and Bush and colleagues (2000). As
explained earlier, negative surprise (and corresponding
raphe serotonergic activity) indicates conflict and the
possible need for behavioral modification. We postulate an
arousal increase as a consequence of this behavioral
saliency, due to the additional cognitive resources such a
situation would demand. Using the described pathway, the
intermediate steps produce increased activity in the
cingulate that may relate to the conflict-related ERN
activity. Labeling the output of this pathway C, the cost of
conflict and potential behavior modification, we obtain a
final description of our model’s modulation of emotional
arousal level: A(t) = Ay(t) + f-DA®) + y-5-HT(t) + C().

A Neural Basis for Loss Aversion

While the psychology of loss aversion has been studied
extensively, little work has focused on identifying its neural
foundations. Loss aversion is principally a stimulus
valuation phenomenon (an overvaluation of negatively
construed stimuli). A neurological explanation should thus
arise from mechanisms involved in the reward system. We
illustrate how our model accounts for loss-averse behavior,
specifically in terms of the asymmetric orbitofrontal cortex
valuations observed in our experimental simulation results.
We outline mechanisms by which arousal is enhanced
disproportionately by negative rewards as opposed to
positive equivalents. This leads to overvaluation of negative
stimuli, by our multiplicative arousal modulation procedure.
Thus, one’s attention is captured more by negative events,
which in turn causes them to loom larger than gains. One
way in which losses are made additionally arousing is our
calibration asymmetry between dopamine-encoded positive
prediction error and serotonin-encoded negative error (i.e.,
serotonin has stronger modulatory effects on the amygdala
than dopamine). This leads to a greater impact on arousal of
negative versus positive outcomes, as required. Such
disparity might have an evolutionary basis: negatively
appraised events may often jeopardize survival and further



reproduction, while the same vital saliency does not
commonly accompany boons (Nettle, 2005; Seligman,
2002). Simple realization of this uneven calibration is a
favorable outcome of opponent prediction error encoding
modeled initially for reasons of biological plausibility.

The other way losses additionally bias arousal is via the
conflict cost C fed back to the amygdala from the cingulate
and dorsolateral prefrontal areas. It is realistic to expect
stimulus saliency, expressed through arousal level, to be
enhanced by the necessity of modifying current behavior in
response to the stimulus. Cognitive resources are needed to
plan and select new actions, and enacting any changes may
incur risks and energy costs. In general, it is less demanding
and risky for an organism to continue its current course than
to formulate and implement a new plan of action. We model
this through our signaling of behavioral modification needs
by negative prediction error input to the cingulate, which
consequently detects conflicts between expected results (i.e.,
current goals) and reality that call for action adjustments.
The cost is thus charged with perceived losses but not gains,
so its feedback to the amygdala further augments the
disparity between the saliency of losses and gains.
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Figure 2: Asymmetric evaluation of gains and losses.
Decoded output from spiking neuron populations (see
Eliasmith & Anderson, 2003). a) The external input signal
to orbitofrontal cortex consists of positive and negative
valuation changes of varying magnitude. b) Arousal
modulated by prediction error and the behavioral saliency of
stimuli. Losses induce markedly greater arousal increases
than gains. ¢) The outcome of the unevenness displayed in
b). Stimulus valuation reductions (losses) are amplified
disproportionately when compared to equivalent gains.

Loss-sensitive reward valuation by our model is vivid in
the simulation of Figure 2. Asymmetric arousal increase
caused by positive and negative valuation changes leads to

losses being exaggerated over gains. Our chosen model
parameters lead to arousal signal amplitudes approximately
200% greater for losses than equal gains. Also note reward
overvaluation caused by both losses and gains (which do so
to different degrees) is transient, subsiding over time to
restore more accurate valuations. This supports findings that
loss aversion is often a knee-jerk affective reaction:
decisions made with increased scrutiny and contemplation
are often closer to rational agent behavior (Kahneman &
Tversky, 1979). The nature of loss aversion is thus well
replicated by our model, which proposes the first detailed,
biologically realistic neural basis for the phenomenon.

Effects of Lesions to the Serotonin System

It is useful to examine the specific effects of introducing
interactions with serotonergic neurons in the dorsal raphe, as
this is a major divergence from typical conceptions of the
reward system present in our model. We do so by ablating
the area and observing how the operation of the model is
affected. The outcomes of this lesioning agree well with the
findings of experimental studies, and considerations of the
overall model provide possible neurological mechanisms for
the associated effects.
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Figure 3: Serotonin lesioning. Data generated for the same
external input signal used in Figure 2, with the dorsal raphe
now removed. a) Arousal is no longer amplified by
unexpected negative stimuli, as that measurement and
reporting system has been lesioned (cf. Fig. 2b). b) Loss-
averse reward valuation ceases, as the necessary upsurges in
the arousal modulator no longer occur (cf. Fig. 2¢). ¢)
Unaffected is whether approach or withdrawal is favored by
the cingulate based on current reinforcer valence, but action
inhibition subsequent to receiving negative feedback about
current behavior has been eliminated.

Figure 3 illustrates the results of a simulation run with the
dorsal raphe nucleus ablated. Figures 3a and 3b show that



negatively appraised events no longer increase arousal and
hence the corresponding stimulus valuation. Loss aversion
disappears, as losses no longer provide any affective “jolt”
to the individual. The impact of this is visible in the activity
of the anterior cingulate (Fig. 3c). Response inhibition (i.e.,
signal diminishment towards 0) in the aftermath of a
negative shift in reward disappears, as such losses are no
longer accompanied by the serotonin release that previously
occurred in the model and is present in real brains (Deakin,
1983; Rogers et al., 2003). This result agrees with animal
lesion studies showing similar response inhibition
disturbance (Harrison, Everitt & Robbins, 1999; Soubrié,
1986) as well as work with human subjects (Tanaka et al.,
2004). In addition, the behavioral modification cost that was
formerly fed back to increase arousal is no longer computed,
as it depended primarily on the serotonin-encoded negative
reward prediction error signal to detect situations that called
for new plans of action. This mirrors the decrease in
behavior-switching penalty in lesioned rats described by Al-
Ruwaitea and colleagues (1999). The end result of these
changes is that behavior is less cautious, which follows from
negative feedback being essentially disregarded. Risky
behavior is exactly that which ignores potential negative
consequences of actions, so by damaging the system that
computes and represents these penalties it is unsurprising
that the result is an increase in such behavior.

Overall, lesioning the raphe serotonin system has the
interlocking effects of damaging negative reward appraisal,
eliminating the effect of behavior modification costs on
arousal and reward valuation, and making behavior more
risk-prone and heedless of penalty. By reproducing these
experimental findings in our model, we are able to provide
insight into their neurological foundations. In particular, the
primary function we assign to serotonin in our model—
computation and representation of negative reward
prediction error—seems to underlie all of the described
effects that accompany dorsal raphe lesioning. In terms of
both direct affective impact and consequences to further
behavioral planning, the encoding of loss-related
information by serotonergic neurons seems vital to the
normal operation of reward processing and executive
control systems. In may be enlightening in future work to
also explore complementary disruptions of the dopamine
system, comparing model simulation results to behavioral
observations regarding reinforcement through rewards and
punishers (e.g., Frank, Seeberger & O’Reilly, 2004).

Conclusion

While there remains much to explore within smaller subsets
of the reward system, explaining complex psychological
phenomena requires a wider synthesis of the available
experimental data. Outlining computations between relevant
brain areas as well as those primarily performed locally
represents a move towards larger-scale models. The specific
modes of interaction we have implemented prove useful in
providing wide-ranging, explanatorily fruitful neural bases
for behavior motivated by affective stimulus valuation.
Besides providing explanations for existing data, our
model also leads to specific experimental predictions
regarding reward processing. Based on our connectivity

structure (Fig. 1) we expect a positive correlation between
serotonin receptor concentration in the amygdala and
observed sensitivity to losses, as a result of our
hypothesized arousal modulation of stimulus valuation. In
addition, damaged innervation between midbrain dopamine
neurons and the raphe serotonin system is predicted to
increase the extent to which both positive and negative
rewards are initially overvalued, due to the mutual
interactivity between these systems we have modeled. This
may be tested behaviorally or verified through imaging data
showing increased amygdala and orbitofrontal activation
during stimulus valuation tasks. Our modeling of indirect
connectivity of orbitofrontal cortex to the amygdala through
the raphe and midbrain subsystems is a further source of
predictions. We expect orbitofrontal damage to produce
degraded context-sensitive affective arousal, reflected
neurologically via disturbed amygdala activation in
situations of rewarding or punishing environmental
feedback. The specific cause of this disturbance is predicted
to be an impairment of basic stimulus valuation, rather than
such appraisal simply not influencing emotional saliency.
Finally, while we have not modeled in detail plan formation
in dorsolateral prefrontal cortex, connectivity through this
region employed by our neural architecture can inform
testable hypotheses. One such prediction is that disturbed
innervation from raphe serotonin to dorsolateral prefrontal
cortex will cause a particular impairment in acting upon
negative environmental feedback (e.g., planning and
implementing appropriate behavioral modifications), while
sparing capabilities to recognize and appraise such
feedback. More general plan formation and execution
abilities should also be preserved, as our model predicts
these impairments entail direct damage to dorsolateral
prefrontal areas, not simply degraded serotonin innervation.
The ability to provide this wide range of predictions stems
from the large-scale nature of our model, and illustrates the
benefits of taking an extensive-scope approach.

Future applications of this broad approach could include
further exploration of the neuropsychological foundations of
economics and decision making. While loss aversion is
itself an important and complex phenomenon, it seems also
to underlie even more elaborate behaviors. The sunk-cost
fallacy (Arkes & Ayton, 1999), framing effects (Tversky &
Kahneman, 1981) and the prisoner’s dilemma (Axelrod &
Hamilton, 1981) are just a few of the important economic
phenomena that stand to be enlightened by a neuroscientific
approach. In addition, a characterization of risk as feeling
(Loewenstein et al., 2001) would enable the exploration of
risk calculation, appraisal and mitigation mechanisms under
the affective valuation-modulation paradigm we have
developed. Large-scale modeling of the reward system, such
as that which we have described here, opens many areas at
the boundaries of emotion, cognition, and social interaction
to in-depth investigation at the neurological level.
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