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EXPLANATION

Explanation of why things happen is one of humans’ most important cognitive

operations.   In everyday life, people are continually generating explanations of why

other people behave the way they do, why they get sick, why computers or cars are not

working properly,  and of many other puzzling occurrences.    More systematically,

scientists develop theories to provide general explanations of physical phenomena such

as why objects fall to earth, chemical phenomena such as why elements combine,

biological phenomena such as why species evolve, medical phenomena such as why

organisms develop diseases, and psychological phenomena such as why people

sometimes make mental errors.

This chapter reviews computational models of the cognitive processes that

underlie these kinds of explanations of why events happen.    It is not concerned with

another sense of explanation that just means clarification, as when someone explains the

U. S. constitution.   The focus will be on scientific explanations, but more mundane

examples will occasionally be used, on the grounds that the cognitive processes for

explaining why events happen are much the same in everyday life and in science,

although  scientific explanations tend tobe more systematic and rigorous than everyday

ones.  In addition to providing a concise review of previous computational models of

explanation, this chapter describes a new neural network model that shows how

explanations can be performed by multimodal distributed representations.
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Before proceeding with accounts of particular computational models of

explanation, let us characterize  more generally the three major processes involved in

explanation and the four major theoretical approaches that have been taken in

computational models of it.   The three major processes are: providing an explanation

from available information, generating new hypotheses that provide explanations, and

evaluating competing explanations. The four major theoretical approaches are:

deductive, using logic or rule-based systems; schematic, using explanation patterns or

analogies;  probabilistic, using Bayesian networks;  and neural, using networks of

artificial neurons.    For each of these theoretical approaches, it is possible to characterize

the different ways in which the provision, generation, and evaluation of explanations are

understood computationally.

The processes of  providing, generating and evaluating explanations can be

illustrated with a simple medical example.   Suppose you arrive at your doctor’s office

with a high fever, headache, extreme fatigue, a bad cough, and major muscle aches.

Your doctor will probably tell you that you have been infected by the influenza virus,

with an explanation like:

People infected by the flu virus often have the symptoms you describe.

You have been exposed to and infected by the flu virus.

So, you have these symptoms.

If influenza is widespread in your community and your doctor has been seeing many

patients with similar symptoms, it will not require much reasoning to provide this

explanation by stating the flu virus as the likely cause of your symptoms.



3

Sometimes, however, a larger inferential leap is required to provide an

explanation.  If your symptoms also include a stiff neck and confusion, your doctor may

make the less common and more serious diagnosis of meningitis.   This diagnosis

requires generating the hypothesis that you have been exposed to bacteria  or viruses that

have infected the lining surrounding the brain.   In this case, the doctor is not simply

applying knowledge already available to provide an explanation, but generating a

hypothesis about you that makes it possible to provide an explanation.    This hypothesis

presupposes a history of medical research that led to the identification of meningitis as a

disease caused by particular kinds of bacteria and viruses, research that required the

generation of new general hypotheses that made explanation of particular cases of the

disease possible.

In addition to providing and generating explanations, scientists and ordinary

people sometimes need to evaluate competing explanations.    If your symptoms are

ambiguous, your doctor may be unsure whether  you have influenza or meningitis, and

therefore consider them as competing explanations of your symptoms.   The doctor’s task

is then to figure out which hypothesis, that you have influenza or meningitis, is the best

explanation of your disease.    Similarly, at a more general level, scientific researchers

had to consider alternative explanations of the causes of meningitis and select the best

one.    This selection presupposed the generation and provision of candidate explanations

and involved the additional cognitive processes of comparing the candidates in order to

decide  which was most plausible.

Provision, generation, and evaluation of explanations can all be modeled

computationally, but the forms these models take depends on background theories about
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what constitutes an explanation.   One view, prominent in both philosophy of science and

artificial intelligence, is that explanations are deductive arguments.   An explanation

consists of a deduction in which the explanatory target, to be explained,  follows logically

from the explaining set of propositions.   Here is a simple example:

Anyone with influenza has fever, aches, and cough.

You have influenza.

So, you have fever, aches, and cough.

 In this oversimplified case, it is plausible that the explanatory target follows deductively

from the explaining propositions.

Often, however, the relation between explainers and explanatory targets is looser

than logical deduction, and an explanation can be characterized as a causal schema rather

than a deductive argument.   A schema is a conceptual pattern that specifies a typical

situation, as in the following example:

Explanatory pattern:   Typically, influenza causes fever, aches, and cough.

Explanatory target:   You have fever, aches, and cough.

Schema instantiation:  Maybe you have influenza.

In medical research, the explanatory pattern is much more complex, as scientists can

provide a much richer description of the genetic, biological, and immunological causes of

infection.     Like deductive explanations, schematic ones can be viewed as providing

causes, but with a more flexible relation between explainers and what is explained.

 Probability theory can also be used to provide a less rigid conception of

explanation than logical deducibility.   A target can be explained by specifying that it is
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probable given the state of affairs described by the explainers.      In the flu case, the

explanation has this kind of structure:

The probability of having fever, aches, and coughs given influenza is high.

So influenza explains why you have fever, aches, and cough.

On this view, explanation is a matter of conditional probability rather than logical

deducibility or schematic fit.   Like deduction and schema views, the probabilistic view

of explanation has inspired interesting computational models, particularly ones involving

Bayesian networks that will be described below.

A fourth computational way of modeling explanation derives from artificial

neural networks which attempt to approximate how brains use large groups of neurons,

operating in parallel to accomplish complex cognitive tasks.   The neural approach to

explanation is  not in itself a theory of explanation in the way that the deductive, schema,

and probabilistic views are, but it offers new ways of thinking about the nature of the

provision, generation, and evaluation of explanations.   This quick overview sets the stage

for the more detailed analysis of computational models of scientific explanation that

follows.   For a concise review of philosophical theories of explanation, see Woodward

(2003); for more detail, see Kitcher and Salmon (1989).

DEDUCTIVE MODELS

The view that explanations are deductive arguments has been prominent in the

philosophy of science.   According to Hempel (1965, p. 336) an explanation is an

argument of the form:

C1, C2, … Ck

L1, L2, …, Lr
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-----------------

E

Here Cs are sentences describing particular facts, the Ls are general laws, and E is the

sentence explained by virtue of being a logical consequence of the other sentences.   This

sort of explanation does occur in some areas of science such as physics, where laws

stated as mathematical formulas enable deductive predictions.

Many computational models in artificial intelligence have presupposed that

explanation is deductive, including ones found in logic programming, truth maintenance

systems, explanation-based learning, qualitative reasoning, and in some approaches to

abduction (a form of inference that involves the generation and evaluation of explanatory

hypotheses).  See, for example,  Russell and Norvig (2003), Bylander et al. (1991), and

Konolige (1992).   These AI approaches are not intended as models of human cognition,

but see the chapter by Bringsjord in this volume for discussion of use of formal logic in

cognitive modeling.

Deductive explanation also operates in rule-based models which have been

proposed for many kinds of human thinking (Anderson, 1983, 1993; Holland, Holyoak,

Nisbett, and Thagard, 1986; Newell and Simon, 1972; Newell, 1990; see also the chapter

by Taatgen and Anderson in this volume).  A rule-based system is a set of rules with an

IF part consisting of conditions (antecedents) and a THEN part consisting of actions

(consequents).   Rule-based systems have often been used to model human problem

solving in which people need to figure  out how to get from a starting state to a goal state

by applying a series of rules.  This is a kind of deduction, in that the application of rules

in a series of if-then  inferences  amounts to a series of applications of the rule of
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deductive inference, modus ponens,  which licenses inferences from p and if p then q to

q.    Most rule-based systems, however, do not always proceed just from starting states to

goal states, but can also work backward from a goal state to find a series of rules that can

be used to get from the starting state to the goal state.

Explanation can be understood as a special kind of problem solving, in which the

goal state is a target to be explained.   Rule-based systems do not have the full logical

complexity to express the laws required for Hempel’s model of explanation, but they can

perform a useful approximation.   For instance, the medical example used in the

introduction can be expressed by a rule like:

IF X has influenza, THEN X has fever, cough, and aches.

Paul has influenza.

-------------------

Paul has fever, cough, and aches.

Modus ponens provides the connection between the rule and what is to be explained.   In

more complex cases, the connection would come from a sequence of applications of

modus ponens as multiple rules get applied.    In contrast to Hempel’s account in which

an explanation is a static argument, rule-based explanation is usually a dynamic process

involving application of multiple rules.   For a concrete example of a running program

that accomplishes explanations in this way, see the PI cognitive model of Thagard (1988;

code is available at http://cogsci.uwaterloo.ca/).  The main scientific example to  which

PI has been applied is the discovery of the wave theory of sound, which occurs in the

context of an attempt to explain why sounds propagate and reflect.
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Thus rule-based systems can model the provisions of explanations construed

deductively, but what about the generation and evaluation of explanations?   A simple

form of abductive inference that generates hypotheses  can be  modeled as a kind of

backward chaining.    Forward chaining means running rules forward in the deductive

process that proceeds from the starting state toward a goal to be solved.   Backward

chaining occurs when a system works  backward from a goal state to find rules that could

produce it from the starting state.   Human problem solving on tasks such as solving

mathematics problems often involves a combination of forward and backward reasoning,

in which a problem solver looks both at the how the problem is described and the answer

that is required, attempting to make them meet.     At the level of a single rule, backward

chaining has the form:  goal G is to be accomplished; there is the rule IF A THEN G, i.e.

action A would accomplish G; so set A  as a new subgoal to be accomplished.

Analogously, people can backchain to find a possible explanation:  fact F is to be

explained; there is a rule  IF  H  THEN F , i.e. hypothesis H  would explain F; so

hypothesize that H is true.   Thus if you know that Paul has fever, aches, and a cough, and

the rule that IF X has influenza, THEN X has fever, cough, and aches, then you can run

the rule backward to produce the hypothesis that Paul  has influenza.

The computational model PI performs this simple kind of hypothesis generation,

but it also can generate other kinds of hypotheses  (Thagard, 1988).  For example, from

the observation that the orbit of Uranus is perturbed, and the rule that IF a planet has

another planet near it THEN its orbit is perturbed, PI infers that there is some planet near

Uranus; this is called existential abduction.   PI also performs abduction to rules that

constitute the wave theory of sound:  the attempt to explain why an arbitrary sound
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propagates generates not only the hypothesis that it consists of a wave but the general

theory that all sounds are waves.   PI also performs a kind of analogical abduction, a topic

discussed in the next section on schemas.

Abductive inference that generates explanatory hypotheses is an inherently risky

form of reasoning because of the possibility of alternative explanations.    Inferring that

Paul has influenza because it explains his fever, aches, and cough is risky because other

diseases such as meningitis can cause the same symptoms.    People should only accept

an explanatory hypothesis if it is better than its competitors, a form of inference that

philosophers call inference to the best explanation (Harman, 1973; Lipton, 2004).   The

PI cognitive  model performs this kind of inference by taking into account 3 criteria for

the best explanation:  consilience, which is a measure  of how  much a hypothesis

explains; simplicity, which  is a measure of how few additional assumptions a hypothesis

needs to carry out an explanation; and analogy, which favors hypotheses whose

explanations are analogous to accepted ones.    A more psychologically elegant way of

performing inference to the best explanation, the model ECHO,  is described  below in

the section on neural  networks.    Neither the PI nor the ECHO way of evaluating

competing explanations requires that explanations be deductive.

In artificial intelligence, the term “abduction” is often used to describe inference

to the best explanation as well as the generation of hypotheses.   In actual systems, these

two processes can be  continuous, for example in the PEIRCE tool for abductive

inference described by Josephson and Josephson (1994 , p. 95).   This is primarily an

engineering tool rather than a cognitive model, but is mentioned here as another approach

to generating and evaluating scientific explanations, in particular medical ones involving
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interpretation of blood tests.     The PEIRCE system accomplishes the goal of generating

the best explanatory hypothesis by achieving three subgoals:

1.  generation of a set of plausible hypotheses

2.  construction of a compound explanation for all the findings

3.  criticism and improvement of the compound explanation.

PEIRCE employs computationally effective algorithms for each of these subgoals, but

does not attempt to do so in a way that corresponds to how people accomplish them.

SCHEMA AND  ANALOGY MODELS

In ordinary life and in many areas of science less mathematical than physics, the

relation between what is explained and what does the explaining is usually looser than

deduction.   An alternative conception of this relation is provided by understanding an

explanation as the application of a causal schema, which is a pattern that describes the

relation between causes and effects.    For example, cognitive science uses a general

explanation schema that has the following structure (Thagard, 2005):

Explanation target: Why do people have a particular kind of intelligent behavior?

Explanatory pattern:

People have mental representations.

People have algorithmic processes that operate on those representations.

The processes, applied to the representations, produce the behavior.

This schema provides explanations when the terms shown in boldface are filled in with

specifics, and subsumes schemas that describe particular kinds of mental representations

such as concepts, rules, and neural networks.    Philosophers of science have discussed

the importance of explanation schemas or patterns (Kitcher, 1993; Thagard, 1999).
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A computational cognitive model of explanation schemas was developed in the

SWALE project (Schank, 1986; Leake, 1992).   This project modeled people’s attempts

to explain the unexpected 1984 death of a racehorse, Swale.  Given an occurrence, the

program SWALE attempts to fit it into memory.  If a problem arises indicating an

anomaly, then the program attempts to find an explanation pattern stored in memory.

The explanation patterns are derived from previous cases, such as other unexpected

deaths.  If SWALE finds more than one relevant explanation pattern, it evaluates them to

determine which is most relevant to the intellectual goals of the person seeking

understanding.   If the best explanation pattern does not quite fit the case to be explained,

it can be tweaked (adapted) to provide a better fit, and the tweaked version is stored in

memory for future use.    The explanation patterns in SWALE’s data base included both

general schemas such as exertion + heart defect causes fatal heart attack and particular

examples, which are used for case-based reasoning, a kind of analogical thinking.  Leake

(1992) describes how competing explanation patterns can be  evaluated according to

various criteria, including a reasoner’s pragmatic goals.

Explaining something by applying a general schema involves the same processes

as explaining using analogies.   In both cases, reasoning proceeds as follows:

Identify the case to be explained.

Search memory for a matching schema or case.

Adapt the found schema or case to provide an explanation of the case to be

explained.
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In deductive explanation, there is a tight logical relation between what is explained and

the sentences that imply it, but in schematic or analogical explanation there need only be

a roughly specified causal relation.

Falkenhainer (1990) describes a program PHINEAS that provides analogical

explanations of scientific phenomena.   The program uses Forbus’ (1984) qualitative

process theory to represent and reason about physical change, and is provided with

knowledge about liquid flow.   When presented with other phenomena to be explained

such as osmosis and heat flow, it can generate new explanations analogically by

computing similarities in relational structure, using the Structure Mapping Engine

(Falkenhainer , Forbus, and Gentner, 1989).  PHINEAS operates in four stages:  access,

mapping/transfer, qualitative  simulation, and revision.   For example, it can generate an

explanation of the behavior of a hot brick in cold water by analogy to what happens when

liquid flows between two containers.   Another computational model that generates

analogical explanations is the PI system (Thagard, 1988), which simulates the discovery

of the wave theory of sound by analogy to water waves.

Thus computational models of explanation that rely on matching schematic or

analogical structures  based on causal fit provide an alternative to models of deductive

explanation.   These two approaches are not competing theories  of explanation, because

explanation can take different forms in different areas of science.   In areas such as

physics that are rich in mathematically expressed knowledge, deductive explanations may

be available.   But in more qualitative areas of science  and everyday life, explanations

are usually less exact and may be better modeled by application of causal schemas or as a

kind of analogical inference.
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PROBABILISTIC MODELS

Another, more quantitative way of establishing a looser relation than deduction

between explainers and their targets is to use probability theory.  Salmon (1970) proposed

that the key to explanation is statistical relevance, where a property B in a population A is

relevant to a property C if the probability of B given A  and C is different from the

probability of B given A alone:  P(B|A&C) ≠ P(B|A).   Salmon later moved away from a

statistical understanding of explanation toward a causal mechanism account (Salmon,

1984), but other philosophers and artificial intelligence researchers have focused on

probabilistic accounts of causality and explanation.   The core idea here is that people

explain why something happened by citing the factors that made it more probable than it

would have been otherwise.

The main computational method for modeling explanation probabilistically is

Bayesian  networks, developed by Pearl (1988, 2000) and  other researchers in

philosophy and computer  science  (e.g Spirtes, Glymour, and Scheines, 1993;

Neapolitain, 1990; Glymour, 2001; see also the chapter by Tenenbaum and Griffith in

this volume).   A Bayesian network is a directed  graph in which the nodes are statistical

variables, the edges between them represent conditional probabilities, and no cycles are

allowed:  you cannot have A influencing B which influences A.   Causal structure and

probability are connected by the Markov assumption, which says that  a variable A in a

causal graph is independent  of all other variables that are not its  effects, conditional on

its direct causes in the graph (Glymour, 2003).

Bayesian networks are convenient ways for representing causal relationships, as

in figure 1.   Powerful algorithms have been developed for making probabilistic
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inferences in Bayesian networks and for learning causal relationships in these networks.

Applications have included  scientific examples, such as developing models in the social

sciences (Spirtes, Glymour, and Scheines, 1993).  Bayesian networks provide an

excellent tool for computational and normative philosophical applications, but the

relevant question for this chapter is how they might contribute to cognitive modeling of

scientific explanation.

Figure 1.  Causal map of a disease.   In a Bayesian network, each node is

a variable and the arrow indicates causality represented by conditional

probability.

The psychological plausibility of Bayesian networks has been advocated by

Glymour (2001) and Gopnik et al. (2004).   They show the potential for using Bayesian

networks to explain a variety of kinds of reasoning and learning studied by cognitive and

developmental psychologists.    Gopnik et al. (2004) argue that children’s causal learning

and inference may involve computations similar to those for learning Bayesian networks

and for predicting with them.   If they are right about children, it would be plausible that

the causal inferences of scientists are also well modeled by Bayesian networks.   From
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this perspective explaining something consists of instantiating it in a causal network and

using probabilistic inference to indicate how it depends causally on other factors.

Generating an explanation consists of producing a Bayesian network, and evaluating

competing explanations consists of calculating the comparative probability of different

causes.

Despite their computational and philosophical power, there are reasons to doubt

the psychological relevance of Bayesian networks.   Although it is plausible that people’s

mental representations contain something like rough causal maps depicted in figure 1, it

is much less plausible that these maps have all the properties of Bayesian networks.

First, there is abundant experimental evidence that reasoning with probabilities is not a

natural part of people’s inferential practice (Kahneman, Slovic, Tversky, 1982; Gilovich,

Griffin, and Kahneman, 2002).  Computing with Bayesian networks requires a very large

number of conditional probabilities that people not working in statistics have had no

chance to acquire.   Second, there is no reason to believe that people have the sort of

information about independence that is required to satisfy the Markov condition and to

make inference in Bayesian networks computationally tractable.   Third, although it is

natural to represent causal knowledge as directed graphs, there are many scientific and

everyday contexts in which such graphs should have cycles because of feedback loops.

For example, marriage breakdown often occurs because of escalating negative affect, in

which the negative emotions of one partner produces behaviors that increase negative

emotions of the other which then produces behavior that increases the negative emotions

of the first partner (Gottman et  al., 2003).    Such feedback loops are also common in

biochemical pathways needed to explain disease (Thagard, 2003).   Fourth, probability by
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itself is not adequate to capture people’s understanding of causality, as argued in the last

section of this chapter.   Hence it is not at all obvious that Bayesian networks are the best

way to model explanation by human scientists.  Even in statistically rich fields such as

the social sciences, scientists rely on an intuitive, non-probabilistic sense of causality of

the sort discussed below.

NEURAL NETWORK MODELS

 The most important approach to cognitive modeling not yet discussed employs

artificial neural networks.  Applying this approach to high-level reasoning faces many

challenges, particularly in representing the complex kinds of information contained in

scientific hypotheses and causal relations.   Thagard (1989) provided a  neural  network

model of how competing scientific explanations can be evaluated, but  did so using a

localist  network in which entire propositions were represented by single artificial

neurons and in which relations between propositions are represented by excitatory and

inhibitory links between the neurons.    Although this model provides an extensive

account of explanation evaluation that is reviewed below, it reveals nothing about what

an explanation is or how explanations are generated.   Neural network modelers have

been concerned mostly with applications to low-level psychological phenomena such as

perception, categorization, and memory, rather than high-level ones such as problem

solving and inference (O’Reilly and Munakata, 2000).  However, this section shows how

a neurologically complex model of explanation and abductive inference can be

constructed.  For a review of neural network approaches to cognitive modeling, see the

chapter by McClelland in this volume.
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  One benefit of attempting neural analyses of explanation is that it becomes

possible to incorporate multimodal aspects of cognitive processing that tend to be ignored

from deductive, schematic, and probabilistic perspectives.   Thagard (forthcoming)

describes how both explainers and explanation targets are sometimes represented non-

verbally.    In medicine, for example, doctors and researchers may employ visual

hypotheses (say about the shape and location of a tumor) to explain observations that can

be represented using sight, touch, and smell as well as words.   Moreover, the process of

abductive  inference has emotional inputs and outputs, because it is usually initiated when

an observation is found to be surprising or puzzling, and it often results in a sense of

pleasure  or satisfaction when a satisfactory hypothesis is used to generate an explanation.

Figure 2 provides an outline of this process.    Let us now look at an implementation of a

neural network model of this sketch.

Figure 2.  The process of abductive inference.  From Thagard (forthcoming).

The model of abduction described here follows the Neural Engineering

Framework (NEF) outlined in Eliasmith & Anderson (2003), and is implemented using

the MATLAB-based NEF simulation software NESim.  The NEF proposes three basic

principles of neural computation (Eliasmith and Anderson, p. 15):
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1.  Neural representations are defined by a combination of nonlinear encoding and linear

decoding.

2. Transformations of neural representations are linearly decoded functions of variables

that are represented by a neural population.

3.  Neural dynamics are characterized by considering neural representations as control

theoretic state variables.

These principles are applied to a particular neural system by identifying the

interconnectivity of its subsystems, neuron response functions, neuron tuning curves,

subsystem functional relations, and overall system behavior.  For cognitive modeling, the

NEF is useful because it provides a mathematically rigorous way of building more

realistic neural models of cognitive functions.

The NEF characterizes neural populations and activities in terms of mathematical

representations and transformations. The complexity of a representation is constrained by

the dimensionality of the neural population that represents it. In rough terms, a single

dimension in such a representation can correspond to one discrete “aspect” of that

representation (e.g., speed and direction are the dimensional components of the vector

quantity velocity). A hierarchy of representational complexity thus follows from neural

activity defined in terms of one-dimensional scalars; vectors, with a finite but arbitrarily

large number of dimensions; or functions, which are essentially continuous indexings of

vector elements, thus ranging over infinite dimensional spaces.

The Neural Engineering Framework provides for arbitrary computations to be

performed in biologically realistic neural populations, and has been successfully applied

to phenomena as diverse as lamprey locomotion (Eliasmith and Anderson, 2003), path
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integration by rats (Conklin & Eliasmith, 2005), and the Wason card selection task

(Eliasmith, 2005). The Wason task model, in particular, is structured very similarly to the

model of abductive inference discussed here. Both employ holographic reduced

representations, a high-dimensional form of distributed representation.

First developed by Plate (1993, 1994, 2003), holographic reduced representations

(HRRs) combine the neurological plausibility of distributed representations with the

ability to maintain complex,  embedded structural relations in a computationally efficient

manner. This ability is common in symbolic models and is often singled out as deficient

in distributed connectionist frameworks; for a comprehensive review of HRRs in the

context of the distributed vs. symbolic representation debate, see Eliasmith & Thagard

(2001).  HRRs consist of high-dimensional vectors combined via multiplicative

operations, and are similar to the tensor products used by Smolensky (1990) as the basis

for a connectionist model of cognition.  But HRRs have the important advantage of fixed

dimensionality: the combination of two n-dimensional HRRs produces another n-

dimensional HRR, rather than the 2n or even n2 dimensionality one would obtain using

tensor products. This avoids the explosive computational resource requirements of tensor

products to represent arbitrary, complex structural relationships.

HRR representations are constructed through the multiplicative circular

convolution (denoted by ⊗) and are decoded by the approximate inverse operation,

circular correlation (denoted by #). The details of these operations are given in the

appendices of Eliasmith & Thagard (2001), but in general if C = A⊗B is encoded, then

C#A ≈ B and C#B ≈ A. The approximate nature of the unbinding process introduces a

degree of noise, proportional to the complexity of the HRR encoding in question and in
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inverse proportion to the dimensionality of the HRR (Plate, 1994).  As noise tolerance is

a requirement of any neurologically plausible model, this loss of representation

information is acceptable, and the “cleanup” method of recognizing encoded HRR

vectors using the dot product can be used to find the vector that best fits what was

decoded (Eliasmith & Thagard, 2001). Note that HRRs may also be combined by simple

superposition (i.e., addition): P = Q⊗R + X⊗Y, where P#R ≈ Q, P#X ≈ Y, and so on.  The

operations required for convolution and correlation can be implemented in a recurrent

connectionist network (Plate, 1993) and in particular under the NEF (Eliasmith, 2005).

In brief, the new model of abductive inference  involves several large, high-

dimensional populations to represent the data stored via HRRs and learned HRR

transformations (the main output of the model), and a smaller population representing

emotional valence information (abduction only requires considering emotion scaling

from surprise to satisfaction, and hence only needs a single dimension represented by as

few as 100 neurons to represent emotional changes). The model is initialized with a base

set of causal encodings consisting of 100-dimensional HRRs combined in the form

antecedent ⊗ ‘a’ + relation ⊗ causes + consequent ⊗ ‘b’,

as well as HRRs that represent the successful explanation of a target ‘x’ (expl ⊗ ‘x’). For

the purposes of this model, only six different “filler” values were used, representing three

such causal rules (‘a’ causes ‘b’, ‘c’ causes ‘d’, and ‘e’ causes ‘f’). The populations used

have between 2000 and 3200 neurons each and are 100- or 200-dimensional, which is at

the lower-end of what is required for accurate HRR cleanup (Plate, 1994).  More rules

and filler values would require larger and higher-dimensional neural populations, an
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expansion that is unnecessary for a simple demonstration of abduction using biologically

plausible neurons.

Following detection of a surprising ‘b’ , which could be an event, proposition, or

any sensory or cognitive data that can be represented via neurons,  the change in

emotional valence spurs activity in the output population towards generating a

hypothesized explanation. This process involves employing several neural populations

(representing the memorized rules and HRR convolution/correlation operations) to find

an antecedent involved in a causal relationship that has ‘b’ as the consequent. In terms of

HRRs, this means producing (rule # antecedent) for [(rule # relation ≈ causes) and (rule

# consequent ≈ ‘b’)].  This production is accomplished in the 2000-neuron, 100-

dimensional output population by means of associative learning through recurrent

connectivity and connection weight updating  (Eliasmith, 2005). As activity in this

population settles, an HRR cleanup operation is performed to obtain the result of the

learned transformation. Specifically, some answer is “chosen” if the cleanup result

matches one encoded value significantly more than any of the others (i.e., is above some

reasonable threshold value).

After the successful generation of an explanatory hypothesis, the emotional

valence signal is reversed from surprise (which drove the search for an explanation) to

what can be considered pleasure or satisfaction derived from having arrived at a plausible

explanation. This in turn induces the output population to produce a representation

corresponding to the successful dispatch of the explanandum ‘b’: namely, the HRR explb

= expl ⊗ ‘b’. Upon settling, it can thus be said that the model has accepted the

hypothesized cause obtained in the previous stage as a valid explanation for the target ‘b’.
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Settling completes the abductive inference: emotional valence returns to a neutral level,

which suspends learning in the output population and causes population firing to return to

basal levels of activity.

Figure 3 shows the result of performing the process of abductive inference in the

neural model, with activity in the output population changing with respect to changing

emotional valence, and vice versa. The output population activity is displayed by

dimension, rather than individual neuron, since the 100-dimensional HRR output of the

neural ensemble as a whole is the real characterization of what is being represented. The

boxed sets of numbers represent the results of HRR cleanups on the output population at

different points in time; if one value reasonably dominates over the next few largest, it

can be taken to be the “true” HRR represented by the population at that moment.  In the

first stage, the high emotional valence leads to the search for an antecedent of a causal

rule" for b, the surprising explanandum. The result is an HRR cleanup best fitting to a,

which is indeed the correct response. Reaching an answer with a reasonably high degree

of certainty triggers an emotional valence shift (from surprise to satisfaction), which in

turn causes the output population to represent the fact that b has been successfully

explained, as represented by the HRR cleanup in the second stage of the graph. Finally,

the emotional arousal shifts to a neutral state as abduction is completed, and the

population returns to representing nothing particularly strongly in the final stage.

The basic process of abduction outlined previously (see Fig. 2) maps very well to

the results obtained from the model. The output population generates a valid hypothesis

when surprised (since “a causes b” is the best memorized rule available to handle
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surprising ‘b’), and reversal of emotional valence corresponds to an acceptance of the

hypothesis, and hence the successful explanation of ‘b’.

In sum, the model of abduction outlined here demonstrates how emotion can

influence neural activity underlying a cognitive process.  Emotional valence acts as a

context gate that determines whether the output neural ensemble must conduct a search

for some explanation for surprising input, or whether some generated hypothesis needs to

be evaluated as a suitable explanation for the surprising input.

The neural network model just described provides a mechanism for explanation,

its emotional input and output, and a simple kind of abduction.  It also does a very simple

sort of explanation evaluation, in that the  causal rule that it selects from memory is

chosen because it is a good match for the problem at hand, namely explaining b.

Obviously, however, this model is too simple to account for the comparative  evaluation

of explanatory theories as performed by the cognitive model ECHO (Thagard, 1989,

1992, 2000).    In ECHO, hypotheses and pieces of evidence are represented by simple

artificial neurons  called units, which are connected  by excitatory or inhibitory links that

correspond to constraints between the propositions they represent.   For example, if a

hypothesis explains a piece of evidence, then there is a symmetric excitatory link between

the unit that represents the hypothesis and the unit that represents the evidence.    If two

hypotheses contradict each other, then there is a symmetric inhibitory link between the

two units that represent them.   Units have activations that spread between them until the

network reaches stable activation levels, which typically takes 60-100 iterations.   If a

unit ends up with positive activation, the proposition that it represents is accepted,
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whereas if a unit ends up with negative activation, the proposition that it represents is

rejected.

Figure 3: Neural activity in output population for abduction.   For clarity, only a

small (evenly spaced) selection of dimensional firing activities is displayed here (the full

2000-neuron population has 100 dimensions). Activities for two specific population

dimensions are highlighted by thickened dashed or dotted lines, to demonstrate the neural

activity changes in response to changing emotional valence (shown as a thickened solid

line).
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ECHO has been used to model numerous cases in the history of science, and has

also inspired experimental research in social and educational psychology (Read and

Marcus-Newhall, 1993;  Schank and Ranney, 1991)    It shows how a very high-level

kind  of cognition, evaluating complex theories, can be performed by simple neural

network performing parallel constraint satisfaction.     ECHO has a degree of

psychological plausibility, but for neurological plausibility it pales in comparison to the

NEF model of abduction described earlier in this section.   The largest ECHO model uses

only around 200 units to encode the same number of propositions, whereas the NEF

model uses thousands of spiking neurons to encode a few causal relations.

Computationally, this seems inefficient, but of course the brain has many billions of

neurons that provide its distributed representations.

How might one implement comparative theory evaluation as performed by ECHO

within the NEF framework?  Aubie and Thagard (in preparation)  use  the NEF to encode

ECHO networks by generating a population of thousands of neurons.   Parallel constraint

satisfaction is performed by transformations of neurons that carry out approximately the

same calculations that occur more directly in ECHO’s localist neural networks.  Hence it

is now possible to model evaluation of competing explanations using more biologically

realistic neural networks.

CAUSALITY

Like most other models of explanation, these neural network models presuppose

some understanding of causality.  In one sense that is common in both science and

everyday life, to explain something involves stating its cause.    For example, when

people have influenza, the virus that infects them is the cause of their symptoms such as
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fever.   But what is a cause?   Philosophical theories of explanation correlate with

competing theories of causality; for example, the deductive view of explanation fits well

with the Humean understanding of causality as constant conjunction.     If all A are B,

then someone can understand how being A  can cause and explain being B .

Unfortunately, universality is not a requisite of either explanation or causality.   Smoking

causes lung cancer, even though many smokers never get lung cancer, and some people

with lung cancer never smoked.   Schematic models of explanation presuppose a

primitive concept of causation without being able to say much about it.   Probability

theory may look like a promising approach to causality in that causes make their effects

more probable than they would be otherwise, but such increased probability may be

accidental or the result of some common cause.   For example, the probability of

someone drowning is greater on a day when much ice cream is consumed, but that is

because of the common cause  that more people go swimming on hot days.    Sorting out

causal probabilistic information from misleading correlations requires much information

about probability and independence that people usually lack.

Thagard (forthcoming) conjectured that it might be possible to give a neural

network account of how organisms understand causality,  Suppose, in keeping with

research on infants’ grasp of causality, that cause is a preverbal concept based on

perception and motor control (Baillargeon, Kotovsky, and Needham, 1996; Mandler,

2004).    Consider an infant of a few months old, lying on its back swiping at a mobile

suspended over its head.   The infant has already acquired an image schema of the

following form:

perception of situation +  motor behavior => perception of new situation.
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Perhaps this schema is innate, but alternatively it may have been acquired from very early

perceptual/motor experiences in which the infant acted on the world and perceived its

changes.     A simple instance of the schema would be:

stationary object + hand hitting object => moving object.

The idea of a preverbal image schema for causality is consistent with the views of some

philosophers that manipulability and intervention are central features of causality

(Woodward, 2004).   The difference between A causing B and A merely being correlated

with B is that manipulating A also manipulates B in the former case but not the latter.

Conceptually, the concepts of manipulation and intervention seem to presuppose the

concept of causation, because making something happen is on the surface no different

from causing it to happen.    However, although there is circularity at the verbal level,

psychologically it is possible to break out of the circle by supposing that people have

from  infancy a neural encoding of the causality image schema described above.    This

nonverbal schema is the basis for understanding the difference between one event making

another event happen and one event just occurring after the other.

The causality image schema is naturally implemented within the Neural

Engineering Framework used to construct the model of abductive inference.   Neural

populations are capable of encoding both perceptions and motor behaviors, and also

capable of encoding relations between them.   In the model of abductive inference

described in the last section, cause (c, e)  was represented by a neural population that

encodes an HRR vector that captures the relation between a vector representing c and a

vector representing e, where both of these can easily be nonverbal perceptions and

actions as well as verbal representations.   In the NEF model of abduction, there is no real
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understanding of causality, because the vector was generated automatically.   In contrast,

it is reasonable to conjecture that people have neural populations that encode the notion

of causal connection as the result of their very early preverbal experience with

manipulating objects.  Because the connection is based on visual and kinesthetic

experiences, it cannot be adequately formulated linguistically, but it provides the

intellectual basis for the more verbal and mathematical characterizations of causality that

develop later.

If this account of causality is correct, then a full cognitive model of explanation

cannot be purely verbal or probabilistic.    Many philosophers and cognitive scientists

currently maintain that scientific explanation of phenomena consists of providing

mechanisms that produce them (e.g. Bechtel and Abrahamsen, 2005; Sun, Coward, and

Zenzen, 2005).   A mechanism is a system of objects whose interactions regularly

produce changes.    All of the computational models described in this chapter are

mechanistic, although they differ in what they take to be the  parts and interactions that

are central to explaining human thinking;  for the neural network approaches, the

computational mechanisms are also biological ones.   But understanding of mechanism

presupposes understanding of causality, in that there must be a relation between the

interactions of the parts that constitutes production of the relevant phenomena.   Because

scientific explanation depends on the notion of causality, and because understanding of

causality is in part visual and kinesthetic, future comprehensive cognitive models of

explanation will need to incorporate neural network simulations of people’s nonverbal

understanding of causality.
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CONCLUSION

This chapter has reviewed four major computational approaches to understanding

scientific explanations:  deductive, schematic, probabilistic, and neural network.   Table 1

summarizes the  different approaches to providing and generating explanations.   To

some extent, the approaches are complementary rather than competitive, because

explanation can take different forms in different areas of science and everyday life.

However, at the root of scientific and everyday explanation is an understanding of

causality represented nonverbally in human brains by populations of neurons encoding

how physical manipulations produce sensory changes.     Another advantage of taking a

neural network approach to explanation is that it becomes possible to model how

abductive inference, the generation of explanatory hypotheses, is a process that is

multimodal, involving not only verbal representations but also visual and emotional ones

that constitute inputs and outputs to reasoning.

target  of
explanation

explainers relation
between target
and explainers

mode of
generation

deductive sentence sentences deduction backward
chaining

schema sentence pattern of
sentences

fit search for fit,
schema
generation

probabilistic variable node Bayesian
network

conditional
probability

Bayesian
learning

neural network neural group:
multimodal
representation

neural groups gated
activation,
connectivity

search,
associative
learning

Table 1.  Summary of approaches to computational modeling of explanation.
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