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Abstract: This target article presents a new computational theory of explanatory coherence that applies to the acceptance and
rejection of seientific hypotheses as well as to reasoning in everyday life. The theory consists of seven principles that establish
refations of local coherence between a hypothesis and other propositions. A hypothesis coheres with propositions that it explains, or
that explain it, or that participate with it in explaining other propositions, or that offer analogous explanations. Propositions are
incoherent with each other if they are contradictory. Propositions that describe the results of observation have a degree of
acceptability on their own, An explanatory hypothesis is accepted if it coheres better overall than its competitors. The power of the
seven principles is shown by their implementation in a connectionist program called Ecio, which treats hypothesis evaluation as a
constraint satisfaction problem. Inputs about the explanatory relations are used to create a network of units representing
propositions, while coherence and ineoherence relations are encoded by excitatory and inhibitory links. EcHo provides an algorithm
for smoothly integrating theory evaluation based on considerations of explanatory breadth, simplicity, and analogy. It has been
applied to such important scientific cases as Lavoisier’s argument for oxygen against the phlogiston theory and Darwin's argument for
evolution against creationism, and also to cases of legal reasoning. The theory of explanatory coherence has implications for artificial
intelligence, psychology, and philosophy.
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1. Introduction

Why did the oxygen theory of combustion supersede the
phlogiston theory? Why is Darwin’s theory of evolution
by natural selection superior to creationism? How can a
jury in a murder trial decide between conflicting views of
what happened? This target article develops a theory of
explanatory coherence that applies to the evaluation of
competing hypotheses in cases such as these. The theory
is implemented in a connectionist computer program
with many interesting properties.

The problem of inference to explanatory hypotheses
has a long history in philosophy and a much shorter one in
psychology and artificial intelligence (AI). Scientists and
philosophers have long considered the evaluation of theo-
ries on the basis of their explanatory power. In the late
nineteenth century, Peirce discussed two forms of in-
ference to explanatory hypotheses: hypothesis, which
involved the acceptance of hypotheses, and abduction,
which involved merely the initial formation of hypotheses
{Peirce 1931-1958; Thagard 1988a). Researchers in ar-
tificial intelligence and some philosophers have used the
term “abduction” to refer to both the formation and the
evaluation of hypotheses. Al work on this kind of in-
ference has concerned such diverse topics as medical
diagnosis (Josephson et al. 1987; Pople 1977; Reggia et al.
1983) and natural language interpretation (Charniak &
McDermott 1985; Hobbs et al. 1988). In philosophy, the
acceptance of explanatory hypotheses is usually called
inference to the best explanation (Harman 1973; 1986). In
social psychology, attribution theory considers how peo-
ple in everyday life form hypotheses to explain events
(Fiske & Taylor 1984). Recently, Pennington and Hastie
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{1986; 1987) have proposed that much of jury decision
making can be best understood in terms of explanatory
coherence. For example, to gain a conviction of first-
degree murder, the prosecution must convince the jury
that the accused had a preformed intention to kill the
victim. Pennington and Hastie argue that whether the
jury will believe this depends on the explanatory co-
herence of the prosecution’s story compared to the story
presented by the defense.

Actual cases of scientific and legal reasoning suggest a
variety of factors that go into determining the explanatory
coherence of a hypothesis. How much does the hypoth-
esis explain? Are its explanations economical? Is the
hypothesis similar to ones that explain similar phe-
nomena? Is there an explanation of why the hypothesis
might be true? In legal reasoning, the question of explain-
ing the hypothesis usually concerns motives: If we are
trying to explain the evidence by supposing that the
accused murdered the victim, we will find the supposi-
tion more plausible if we can think of reasons why the
accused was motivated to kill the victim. Finally, on all
these dimensions, how does the hypothesis compare

.against alternative hypotheses?

This paper presents a theory of explanatory coherence
that is intended to account for a wide range of explanatory
inferences. I shall propose seven principles of explanato-
ry coherence that encompass the considerations just
described and that suffice to make judgments of explana-
tory coherence. Their sufficiency is shown by the imple-
mentation of the theory in a connectionist computer
program called ECHO that has been applied to more than a
dozen complex cases of scientific and legal reasoning. My
account of explanatory coherence thus has three parts:
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the statement of a theory, the description of an algorithm,
and applications to diverse examples that show the feasi-
bility of the algorithm and help to demonstrate the power
of the theory (cf. Marr 1982). Finally, I shall discuss the
implications of the theory for artificial intelligence, psy-
chology, and philosophy.

2. A theory of explanatory coherence

2.1. Coherence and explanation. Before presenting the
theory, it will be useful to make some general points
about the concepts of coherence and explanation, al-
though it should be made clear that this paper does not
purport to give a general account of either concept. The
question of the nature of explanation is extremely difficult
and controversial. Philosophers disagree about whether
explanation is primarily deductive (Hempel 1965), statis-
tical (Salmon 1970), causal (Salmon 1984), linguistic
{Achinstein 1983), or pragmatic (van Fraassen 1980). In
Al, explanation is sometimes thought of as deduction
{Mitchell et al. 1986) and sometimes as pattern instantia-
tion (Schank 1986). This paper does not pretend to offera
theory of explanation, but is compatible with any of the
foregoing accounts (except van Fraassen’s, which is
intended to make explanation irrelevant to questions of
acceptability and truth).

Nor does this paper give a general account of co-
herence. There are various notions of coherence in the
literatures of different fields. We can distinguish at least
the following:

Deductive coherence depends on relations of logical
consistency and entailment among members of a set of
propositions.

Probabilistic coherence depends on a set of proposi-
tions having probability assignments consistent with the
axioms of probability.

Semantic coherence depends on propositions having
similar meanings.

BonJour (1985) provides an interesting survey of philo-
sophical ideas about coherence. Here, I am only offering
a theory of explanatory coherence.

Explanatory coherence can be understood in several
different ways, as

{a) a relation between two propositions,

{b) a property of a whole set of related propositions, or

{c) a property of a single proposition.

I claim that (a) is fundamental, with (b) depending on (a),
and (¢) depending on (b). That is, explanatory coherence
is primarily a relation between two propositions, but we
can speak derivatively of the explanatory coherence of a
set of propositions as determined by their pairwise co-
herence, and we can speak derivatively of the explanatory
coherence of a single proposition with respect to a set of
propositions whose coherence has been established. A
major requirement of an account of explanatory co-
herence is that it show how it is possible to move from (a)
to (b) to (c); algorithms for doing so are presented as part of
the computational model described below.

Because the notion of the explanatory coherence of an
individual proposition is so derivative and depends on a
specification of the set of propositions with which it is
supposed to cohere, I shall from now on avoid treating
coherence as a property of individual propositions. In-
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stead, we can speak of the acceptability of a proposition,
which depends on but is detachable from the explanatory
coherence of the set of propositions to which it belongs.
We should accept propositions that are coherent with our
other beliefs, reject propositions that are incoherent with
our other beliefs, and be neutral toward propositions that
are neither coherent nor incoherent. Acceptability has
finer gradations than just acceptance, rejection, and neu-
trality, however: The greater the coherence of a proposi-
tion with other propositions, the greater its acceptability.

In ordinary language, to cohere is to hold together, and
explanatory coherence is a holding together because of
explanatory relations. We can, accordingly, start with a
vague characterization:

Propositions P and Q cohere if there is some explanatory
relation between them.

To fill this statement out, we must specify what the
explanatory relation might be. I see four possibilities:

(1) P is part of the explanation of Q.

(2) Q is part of the explanation of P.

(3) Pand Q are together part of the explanation of some
R.

{(4) P and Q are analogous in the explanations they

respectively give of some R and §.
This characterization leaves open the possibility that two
propositions can cohere for nonexplanatory reasons: de-
ductive, probabilistic, or semantic. Explanation is thus
sufficient but not necessary for coherence. I have taken
“explanation” and “explain” as primitives, while assert-
ing that a relation of explanatory coherence holds be-
tween P and Q if and only if one or more of (1)-(4) is true.
Incoherence between two propositions occurs if they
contradict each other or if they offer explanations that
background knowledge suggests are incompatible.

The psychological relevance of explanatory coherence
comes from the following general predictions concerning
the acceptance of individual propositions:

If a proposition is highly coherent with the beliefs of a
person, then the person will believe the proposition with
a high degree of confidence.

If a proposition is incoherent with the beliefs of a
person, then the person will not believe the proposition.
The applicability of this to several areas of psychological
experimentation is discussed in section 9.

2.2, Principles of explanatory coherence. | now propose
seven principles that establish relations of explanatory
coherence and make possible an assessment of the global
coherence of an explanatory system 8. § consists of
propositions P, @, and P, . . . P_. Local coherence is a
relation between two propositions. I coin the term “in-
cohere” to mean more than just that two propositions do
not cohere: To incohere is to resist holding together. The
principles are as follows:

Principle 1. Symmetry.

(a) If P and Q cohere, then Q and P cohere.
(b) If P and Q incohere, then Q and P incohere.

Principle 2. Explanation.

IfP, ... P, explain Q, then:
{a} Foreach P, in P, . . . P, P, and Q cohere.
(b} For each P;and P, in P, . . . P_. P; and P, cohere.




(¢) In(a)and (b), the degree of coherence is inverscly propor-
tional to the number of propositions P, . . . P

Principle 3. Analogy.

{a) If P, explains Q,, P, explains Q,, P, is analogous to P,,
and Q, is analogous to Q,, then P, and P, cohere, and Q, and Q,
cohere.

(b) If P, explains Q,, P, explains Q,, Q, is analogous to Q,
but P, is disanalogous to P,, then P; and P; incohere.

Principle 4. Data Priority.

Propositions that describe the results of observation have a
degree of acceptability on their own.

Principle 5. Contradiction.
If P contradicts ), then P and Q incohere.
Principle 6. Acceptability.

(a) The acecptability of a proposition P in a system § depends
on its coherence with the proposition in S.

(b) If many results of relevant experimental observations are
unexplained, then the acceptability of a proposition P that
explains only a few of them is reduced.

Principle 7. System Coherence.

The global explanatory coherence of a systcm $ of proposi-
tions is a function of the pairwisc local coherence of those
propositions.

2.3, Discussion of the principles. Principle 1, Symmetry,
asserts that pairwise coherence and incoherence are sym-
metric relations, in keeping with the everyday sense of
coherence as holding together. The coherence of two
propositions is thus very different from the nonsymmetric
relations of entailment and conditional probability. Typ-
ically, P entails Q without Q entailing P, and the condi-
tional probability of P given Q is different from the
probability of Q given P. But if P and QQ hold together, so
do Q and P. The use of a symmetrical relation has
advantages that will become clearer in the discussion of
the connectionist implementation below.

Principle 2, Explanation, is by far the most important
for assessing explanatory coherence, because it estah-
lishes most of the coherence relations. Part (a; is the mast
obvious: If a hypothesis P is part of the explanation of a
piece of evidence Q, then P and Q cohere. Moreover, ifa
hypothesis P, is explained by another hypothesis P,, then
P, and P, cohere. Part {a) presupposes that explanation is
a more restrictive relation than deductive implication,
because otherwise we could prove that any two proposi-
tions cohere; for unless we use a relevance lagic (Ander-
son & Belnap 1975), P, and the contradiction P, & not-P,
imply any Q, so it would follow that P, coheres with Q. It
follows fram Principlc 2(a), in conjunction with Principle
6, that the more a hypothesis explains, the more coherent
and hence acceptable it is. Thus, this principle subsumes
the criterion of explanatory breadth (which Whewell,
1967, called “consilience”) that I have elsewhere claimed
to be the most important for selecting the best explana-
tion (Thagard 1978; 1988a).

Whereas part (a} of Principle 2 says that what explains
coheres with what is explained, part (b) states that two
propositions cohere if together they provide an explana-
tion. Behind part (h) is the Duhem-Quine idea that the
evaluation of a hypothesis depends partly on the other
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hypotheses with which it furnishes explanations (Duhem
1954; Quine 1961; see section 10.1). 1 call two hypotheses
that are used together in an explanation “cohypotheses.”
Again I assume that explanation is more restrictive than
implication; otherwise it would follow that any proposi-
tion that explained somnething was coherent with every
other proposition, because if P, implies Q, then so does
P, & P,. Butany scientist who maintained at a conference
that the theory of general relativity and today’s baseball
scores together explain the motion of planets would be
laughed off the podium. Principle 2 is intended to apply
to explanations and hypotheses actually proposed by
scientists.

Part (c) of Principle 2 embodies the claim that if
numerous propositions are needed to furnish an explana-
tion, then the coherence of the explaining propositions
with each other and with what is explained is thereby
diminished. Scientists tend to be skeptical of hypotheses
that require myriad ad hoc assumptions in their explana-
tions. There is nothing wrong in principle in having
explanations that draw on many assumptions, but we
should prefer theories that generate explanations using a
unified core of hypotheses. I have elsewhere contended
that the notion of simplicity most appropriate for scientific
theory choice is a comparative one preferring theories
that make fewer special assumptions (Thagard 1978;
1988a}. Principles 2(b) and 2(c) together subsume this
criterion. I shall not attempt further to characterize
“degree of coherence” here, but the connectionist al-
gorithm described below provides a natural interpreta-
tion. Many other notions of simplicity have been pro-
posed {(e.g., Foster & Martin 1966; Harman et al. 1988),
but none is so directly relevant to considerations of
explanatory coherence as the one embodied in Principle

The third criterion for the best explanation in my
earlier account was analogy, and this is subsumed in
Principle 3. There is controversy about whether analogy
is of more than heuristic use, but scientists such as
Darwin have used analogies to defend their theories; his
argument for evolution by natural selection is analyzed
below. Principle 3(a) does not say simply that any two
analogous propositions cohere. There must be an explan-
atory analogy, with two analogous propositions occurring
in explanations of two other propositions that are analo-
gous to each other. Recent computational models of
analogical mapping and retrieval show how such corre-
spondences can be noticed (Holyoak & Thagard, in press;
Thagard et al. 1989). Principle 3(b) says that when similar
phenomena are explained by dissimilar hypotheses, the
hypotheses incohcre. Although the use of such dis-
analogies is not as common as the use af analogies, it was
important in the reasoning that led Einstein (1952) to the
special theory of relativity: He was bothered by asymme-
tries in the way Maxwell’s electrodynamics treated the
case of (1) a magnet in motion and a conductor at rest quite
differently from the case of (2) a magnet at rest and a
conductor in notion.

Principle 4, Data Priority, stands much in need of
elucidation and defense. In saying that a proposition
describing the resvlts of observation has a degree of
acceptability on its own, I am not suggesting that it is
indubitable, but only that it can stand on its own more
successfully than can a hypothesis whose sole justification
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is what it explains. A proposition Q may have some
independent acceptability and still end up not accepted,
if it is only coherent with propositions that are themselves
not acceptable.

From the point of view of explanatory coherence alone,
we should not take propositions based on observation as
independently acceptable without any explanatory rela-
tions to other propositions. As BonJour (1985) argues, the
coherence of such propositions is of a nonexplanatory
kind, based on background knowledge that observations
of certain sorts are very likely to be true. From past
experience, we know that our observations are very likely
to be true, so we should believe them unless there is
substantial reason not to. Similarly, at a very different
level, we have some confidence in the reliability of
descriptions of experimental results in carefully refereed
scientific journals. Section 10.4 relates the question of
data priority to current philosophical disputes about
justification.

Principle 5, Contradiction, is straightforward. By “con-
tradictory” here I mean not just syntactic contradictions
like P & not-P, but also semantic contradictions such as
“This ball is black all over” and “This ball is white all
over.” In scientific cases, contradiction becomes impor-
tant when incompatible hypotheses compete to explain
the same evidence. Not all competing hypotheses in-
cohere, however, because many phenomena have multi-
ple causes. For example, explanations of why someone
has certain medical symptoms may involve hypotheses
that the patient has various diseases, and it is possible that
more than one disease is present. Competing hypotheses
incohere if they are contradictory or if they are framed as
offering the most likely cause of a phenomenon. In the
latter case, we get a kind of pragmatic contradictoriness:
Two hypotheses may not be syntactically or semantically
contradictory, yet scientists will view them as contradic-
tory because of background beliefs suggesting that only
one of the hypotheses is acceptable. For example, in the
debate over dinosaur extinction (Thagard 1988b), scien-
tists generally treat as contradictory the following
hypotheses:

{1) Dinosaurs became extinct because of a meteorite
collision,

(2) Dinosaurs became extinct because the sea level

fell.
Logically, (1) and (2) could both be true, but scientists
treat them as conflicting explanations, possibly because
there are no explanatory relations between them and
their conjunction is unlikely.

The relation “cohere” is not transitive. If P, and P,
together explain Q, while P, and P, together explain not-
Q. then P, coheres with both Q and not-Q, which
incohere. Such cases do occur in science. Let P, be the
gas law that volume is proportional to temperature, P, a
proposition describing the drop in temperature of a
particular sample of gas, P, a proposition describing the
rise in temperature of the sample, and Q a proposition
about increases in the sample’s volume. Then P, and P,
together explain a decrease in the volume, while P, and
P, explain an increase.

Principle 6, Acceptability, proposes in part (a) that we
can make sense of the overall coherence of a proposition
in an explanatory system just from the pairwise coherence
relations established by Principles 1-5. If we have a
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hypothesis P that coheres with evidence Q by virtue of
explaining it, but incoheres with another contradictory
hypothesis, should we accept P? To decide, we cannot
merely count the number of propositions with which P
coheres and incoheres, because the acceptability of P
depends in part on the acceptability of those propositions
themselves. We need a dynamic and parallel method of
deriving general coherence from particular coherence
relations; such a method is provided by the connectionist
program described below.

Principle 6(b), reducing the acceptability of a hypoth-
esis when much of the relevant evidence is unexplained
by any hypothesis, is intended to handle cases where the
best available hypothesis is still not very good, in that it
accounts for only a fraction of the available evidence.
Consider, for example, a theory in economics that could
explain the stock market crashes of 1929 and 1987 but that
had nothing to say about myriad other similar economic
events. Even if the theory gave the best available account
of the two crashes, we would not be willing to elevate it to
an accepted part of general economic theory. What does
“relevant” mean here? [See BBS multiple book review of
Sperber & Wilson's Relevance, BBS 10(4) 1987.] As a first
approximation, we can say that a piece of evidence is
directly relevant to a hypothesis if the evidence is ex-
plained by it or by one of its competitors. We can then add
that a piece of evidence is relevant if it is directly relevant
or if it is similar to evidence that is relevant, where
similarity is a matter of dealing with phenomena of the
same kind. Thus, a theory of the business cycle that
applies to the stock market crashes of 1929 and 1987
should also have something to say about nineteenth-
century crashes and major business downturns in the
twentieth century.

The final principle, System Coherence, proposes that
we can have some global measure of the coherence of a
whole system of propositions. Principles 1-5 imply that,
other things being equal, a system S will tend to have
more global coherence than another if

(1) S has more data in it;

(2) S has more internal explanatory links between
propositions that cohere because of explanations and
analogies; and

(3) 8 succeeds in separating coherent subsystems of

propositions from conflicting subsystems.
The connectionist algorithm described below comes with
a natural measure of global system coherence. It also
indicates how different priorities can be given to the
different principles.

3. Connectionist models

To introduce connectionist techniques, 1 shall briefly
describe the popular example of how a network can be
used to understand the Necker cube phenomenon (see,
for example, Feldman & Ballard 1982; Rumelhart et al.
1986). Figure 1 contains a reversing cube: By changing
our focus of attention, we are able to see as the front either
face ABCD or face EFGH. The cube is perceived holis-
tically, in that we are incapable of seeing corner A at the
front without seeing corners B, C, and D at the front as
well.

We can easily construct a simple network with the
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Figure 1. The Necker cube. Either ABCD or EFGH can be

pcreeived as the front.

desired holistic property using units, crudely analogous
to neurons, connected by links. Let Af be a unit that
represents the hypothesis that corner A is at the front,
while Ab represents the hypothesis that corner A is at the
back. Similarly, we construct units Bf, Bb, Cf, Cb, Df,
Db, Ef, Eb, Ff, Fb, Gf, Gb, Hf, and Hb. These units are
not independent of each other. To signify that A cannot be
both at the front and at the back, we construct an
inhibitory link between the units Af and Ab, with similar
links inhibiting Bf and Bb, and so on. Because corners A,
B, C, and D go together, we construct excitetory links
between each pair of Af, Bf, Cf, and Df, and between each
pair of Ab, Bb, Ch, and Db. Analogous inhibitory and
excitatory links are then set up for E, F, G, and H. In
addition, we need inhibitory links between Af and Ef, Bf
and Ff, and so on. Part of the resulting network is
depicted in Figure 2. I have used solid lines to indicate
excitatory links, and dotted lines to indicate inhibitory
links.

Units can have varying degrees of activation. Suppose
that our attention is focused on cormner A, which we
assume to be at the front, so that unit Afis activated, Then
by virtue of the excitatory links from Af to Bf, Cf, and Df,
these units will be activated. The inhibitory links from Af
to Ab and Ef will cause those units to be deactivated. In
turn, the excitatory links from Ab to Bb, Ch, and Db will

Figurc 2. A connectionist network for interpreting the cube.
Af is a unit representing the hypothesis that A is at the front,
whereas Ab represents the hypothesis that A is at the back. Solid
lines represent excitatory links; dotted lines represent inhibito-
ry links.

Thagard: Explanatory coherence -

deactivate them. Thus activation will spread through the
network until all the units corresponding to the view that
A, B, C, and D are at the front are activated, while all the
units corresponding to the view that E, F, G, and H are at
the front are deactivated.

Goldman has pointed out some of the attractive epis-
temological properties of this sort of network (Goldman
1986, Chap. 15; see also Thagard, in press a). A proposi-
tion, represented by a unit, is accepted if it is part of the
best competing coalition of units and its rivals are re-
jected. Uncertainty consists in the absence of a clear-cut
winner. Goldman argues that the connectionist view that
has units representing propositions settling into either on
or off states is more psychologically plausible and epis-
temologically appealing than the Bayesian picture that
assigns probabilities to propositions.

4. ECHO

4.1. The program. Let us now look at ECHO, a computer
program written in Common LISP that is a straightforward
application of connectionist algorithms to the problem of
explanatory coherence. In ECHO, propositions represent-
ing hypotheses and results of observation are represented
by units. Whenever Principles 1-5 state that two proposi-
tions cohere, an excitatory link between them is estab-
lished. If two propositions incohere, an inhibitory link
between them is established. In EcHO, these links are
symmetric, as Principle 1 suggests: The weight from unit
1 to unit 2 is the same as the weight from unit 2 to unit 1.
Principle 2(c) says that the larger the number of proposi-
tions used in an explanation, the smaller the degree of
coherence between each pair of propositions. ECHO
therefore counts the propositions that do the explaining
and proportionately lowers the weight of the excitatory
links between units representing coherent propositions.

Principle 4, Data Priority, is implemented by links to
each data unit from a special evidence unit that always has
activation 1, giving each unit some acceptability on its
own. When the netwark is run, activation spreads from
the special unit to the data units, and then to the units
representing explanatory hypotheses. The extent of data
priority — the presumed acceptability of data propositions
— depends on the weight of the link between the special
unit and the data units. The higher this weight, the more
immune the data units become to deactivation by other
units. Units that have inhibitory links between them
because they represent contradictory hypotheses have to
compete with each other for the activation spreading from
the data units: The activation of one of these units will
tend to suppress the activation of the other. Excitatory
links have positive weights; best performance occurs with
weights around .05. Inhibitory links have negative
weights; best performance occurs with weights around
—.2. The activation of units ranges between 1 and —1;
positive activation can be interpreted as acceptance of the
proposition represented by the unit, negative activation
as rejection, and activation close to 0 as neutrality. The
relation between acceptability and probability is dis-
cussed in section 10,2,

To summarize how ECHO implements the principles of
explanatory coherence, we can list key terms from the
principles with the corresponding terms from EcHO:
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Proposition: unit

Coherence: excitatory link, with positive weight

Incoherence: inhibitory link, with negative weight

Data priority: excitatory link from special unit

Acceptability: activation

System coherence: See the function H defined in
section 4.9 below.

The following are some examples of the Lisp formulas
that constitute ECHO's inputs (I omit LISP quote symbols;
see Tables 1-4 for actual input):

1. (EXPLAIN (H1 H2) ED)

2. (EXPLAIN (H1 H2 H3) E2)

3. (ANALOGOUS (H5 H6) (E5 E6))

4. (DATA (E1 E2 E5 E6))

5. (CONTRADICT H1 H4)
Formula 1 says that hypotheses H1 and H2 together
explain evidence El. As suggested by the second princi-
ple of explanatory coherence proposed above, formula 1
sets up three excitatory links, between unitsrepresenting
Hl and E1, H2 and E1, and H1 and H2.! Formula 2 sets
up six such links, between each of the hypotheses and the
evidence, and between each pair of hypotheses, but the
weight on the links will be less than those established by
formula 1, because there are more cohypotheses. In
accord with Principle 3(a), Analogy, formula 3 produces
excitatory links between H5 and H6, and between E5 and
E6, if previous input has established that H5 explains E5
and H6 explains E6. Formula 4 is used to apply Principle
4, Data Priority, setting up explanation-independent
excitatory links to each data unit from a special evidence
unit. Finally, formula 5 sets up an inhibitory link between
the contradictory hypotheses H1 and H4, as prescribed
by Principle 5. A full specification of ECHO's inputs and
algorithms is provided in the Appendix.

Input to ECHO can optionally reflect the fact that not all
data and explanations are of equal merit. For example, a
data statement can have the form

(DATA (E1 (E 2.8)).

This formula sets up the standard link from the special
unit to E1, but interprets the “.8” as indicating that E2 is
not as reliable a piece of evidence as E1. Hence, the
weight from the special unit to E2 is only .8 as strong as
the weight from the special unit to E1. Similarly, explain
statements take an optimal numerical parameter, as in

(EXPLAIN (HD) E 1.9).

The additional parameter, .9, indicates some weakness in
the quality of the explanation and results in a lower than
standard weight on the excitatory link between H1 and
El. In ECHO's applications to date, the additional param-
eters for data and explanation quality have not been used,
because it is difficult to establish them objectively from
the texts we have been using to generate ECHO's inputs.
But it is important that ECHO has the capacity to make use
of judgments of data and explanation quality when these
are available.

Program runs show that the networks thus established
have numerous desirable properties. Other things being
equal, activation accrues to units corresponding to hy-
potheses that explain more, provide simpler explana-
tions, and are analogous to other explanatory hypotheses.
The considerations of explanatory breadth, simplicity,
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and analogy are smoothly integrated. The networks are
holistic, in that the activation of every unit can potentially
have an effect on every other unit linked to it by a path,
however lengthy. Nevertheless, the activation of a unit is
directly affected only by those units to which it is linked.
Although complexes of coherent propositions are evalu-
ated together, different hypotheses in a complex can
finish with different activations, depending on their par-
ticular coherence relations. The symmetry of excitatory
links means that active units tend to bring up the activa-
tion of units with which they are linked, whereas units
whose activation sinks below 0 tend to bring down the
activation of units to which they are linked. Data units are
given priority, but can nevertheless be deactivated if they
are linked to units that become deactivated. So long as
excitation is not set too high (see section 12.2), the
networks set up by ECHO are stable: In most of them, all
units reach asymptotic activation levels after fewer than
100 cycles of updating. The most complex network imple-
mented so far, comparing the explanatory power of
Copernicus’s heliocentric theory with Ptolemy’s geo-
centric one, requires about 210 cycles before its more
than 150 units have all settled. To illustrate ECHO's
capabilities, I shall describe some very simple tests that
illustrate its ability to handle considerations of explanato-
ry breadth, simplicity, and analogy. Later sections on
scientific and legal reasoning provide more complex and
realistic examples.

4.2, Explanatory breadth. We should normally prefer a
hypothesis that explains more than alternative hypoth-
eses. If hypothesis H1 explains two pieces of evidence,
whereas H2 explains only one, then H1 should be pre-
ferred to H2. Here are four formulas given together to
ECHO as input:

(EXPLAIN (H1) E1)
(EXPLAIN (H1) E2)
(EXPLAIN (H2) E2)
(CONTRADICT (H1 H2))
(DATA (E1 E2))

These formulas generate the network pictured in Figure
3, with excitatory links corresponding to coherence rep-
resented by solid lines, and with inhibitory links corre-
sponding to incoherence represented by dotted lines.

El E2

SPECIAL

Figure 3. Explanatory breadth. As in Figure 2, solid lines
represent excitatory links, whereas dotted line represents in-
hibitory links. Evidence units E1 and E2 are linked to the
special unit. The resudt of running this network is that H1
defeats H2.




Activation flows from the special unit, whose activation is
clamped at 1, to the evidence units, and then to the
hypothesis units, which inhibit each other. Because H1
explains more than its competitor H2, H1 becomes ac-
tive, settling with activation above 0, while H2 is deacti-
vated, settling with activation below 0. (See section 4.10
for a discussion of the parameters that affect the runs, and
the Appendix for sensitivity analyses.) Notice that al-
though the links in ECHO are symmetric, in keeping with
the symmetry of the coherence relation, the flow of
activation is not, because evidence units get activation
first and then pass it along to what explains them.
ECHO's networks have interesting dynamic properties.
What happens if new data come in after the network has
settled? When ECHO is given the further information that
H2 explains additional data E3, E4, and E5, then the
network resettles into a reversed state in which H2 is
activated and H1 is deactivated. However, if the addi-
tional information is only that H2 explains E2, or only that
H2 explains E3, then ECHO does not resettle into a state
in which H1 and H2 get equal activation. (It does give H1
and H2 equal activation if the input says that they have
equal explanatory power from the start.) Thus EcHO
displays a kind of conservatism also seen in human scien-
tists. See the discussion of conservatism in section 10.4.

4.3, Being explained. Section 4.2 showed how Principle
2(a) leads ECHO to prefer a hypothesis that explains more
than its competitors. The same principle also implies
greater coherence, other things being equal, for a hy-
pothesis that is explained. Consider the following input:

(EXPLAIN (H1} E1)
(EXPLAIN (H1) E2)
(EXPLAIN (H2) E1)
(EXPLAIN (H2) E2)
(EXPLAIN (H3) H1)
(CONTRADICT H1 H2)
(DATA (E1 E2)

Figure 4 depicts the network constructed using this
input. Here, and in all subsequent figures, the special
evidence unit is not shown. In Figure 4, H1 and H2 have
the same explanatory breadth, but ECHO activates H1 and
deactivates H2 because H1 is explained by H3. EcHO
thus gives more activation to a hypothesis that is ex-

El E2

Figure 4. Being explained. H1 defeats H2 because it is ex-
plained by H3.
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plained than to a contradictory one that is not explained.
If the above formulas did not include a CONTRADICT
statement, then no inhibitory links would be formed, so
that all units would asymptote with positive activation.
Because of the decay parameter, activation is still less
than 1: See the equations in the Appendix.

4.4, Refutation. According to Popper (1959), the hallmark
of science is not the acceptance of explanatory theories
but the rejection of falsified ones. Take the simplest case
where a hypothesis H1 explains (predicts) some piece of
“negative evidence” NEI1, which contradicts data E1.
Then El becomes active, deactivating NE1 and hence
H1. Such straightforward refutations, however, are rare
in science. Scientists do not typically give up a promising
theory just because it has some empirical problems, and
neither does EcHo. If in addition to explaining NE1, H1
explains some positive pieces of evidence, E2 and E3,
then ECHO does not deactivate it. However, an alter-
native hypothesis H2 that also explains E2 and E3 is
preferred to H1, which loses because of NE1. Rejection
in science is usually a complex process involving compet-
ing hypothesis, not a simple matter of falsification
(Lakatos 1970; Thagard 1988a, Chap. 9; section 10.1
below).

4.5. Unlification. The impact of explanatory breadth, being
explained, and refutation all arise from Principle 2(a),
which says that hypotheses cohere with what they ex-
plain. According to Principle 2(b), cohypotheses that
explain together cohere with each other. Thus, if H1 and
H2 together explain evidence E, then H1 and H2 are
linked. This gives ECHO a preference for unified explana-
tions, ones that use a common set of hypotheses rather
than having special hypotheses for each piece of evidence
explained. Consider this input, which generates the net-
work shown in Figure 5:

(EXPLAIN (H1 Al) ED)
(EXPLAIN (H1 A2) E2)
(EXPLAIN (H2 A3) E1)
(EXPLAIN (H2 A3) E2)
(CONTRADICT H1 H2)
(DATA (E1 E2))

Although H1 and H2 both explain E1 and E2, the
explanation by H2 is more unified in that it uses A3 in
both cases. Hence ECHO forms a stronger link between
H2 and A3 than it does between H1 and Al or A2, so H2
becomes activated and H1 is deactivated. The explana-
tions by H2 are not simpler than those by H1, in the sense

e ————
Al A2 H1 ~ 7 T A3
El E2
Figure 5. Unification. H2 defeats H1 hecause it gives a more

unified expianation of the evidence.
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Hl -~ ~~~~°~° H2 = H3

El

Figurc6. Simplicity. H1 defeats H2 because it gives a simpler
explanation of the evidence.

of Principle 2(c), because both involve two hypotheses.
ECHO's preference for H2 over H1 thus depends on the
coherence of H2 with its auxiliary hypothesis and the
evidence being greater than the coherence of H1 with its
auxiliary hypotheses and the evidence. One might argue
that the coherence between cohypotheses should be less
than the coherence of a hypothesis with what it explains;
ECHO contains a parameter that can allow the weights
between cohypothesis units to be less than the weight
between a hypothesis unit and an evidence unit.

4.6. Simpllcity. According to Principle 2(c), the degree of
coherence of a hypothesis with what it explains and with
its cohypotheses is inversely proportional to the number
of cohypotheses. An example of ECHO's preference for
simple hypotheses derives from the input:

(EXPLAIN (H1) E1)
(EXPLAIN (H2 H3) E1)
(CONTRADICT H1 H2)
(DATA (E1))

Here HI is preferred to H2 and H3 because it accom-
plishes the explanation with no cohypotheses. The gener-
ated network is shown in Figure 6.

Principle 2(c) is important for dealing with ad hoc
hypaotheses that are introduced only to save a hypothesis
from refutation. Suppose that H1 is in danger of refuta-
tion because it explains negative evidence NE1, which
contradicts evidence E1. One might try to save H1 by
concocting an auxiliary hypothesis, H2, which together
with H1 would explain E1. Such maneuvers are common
in science: Nineteenth-century physicists did not aban-
don Newtonian mechanics because it gave false predic-
tions concerning the motion of Uranus; instead, they
hypothesized the existence of another planet, Neptune,
to explain the discrepancies. Neptune, of course, was
eventually observed, but we need to be able to discount
auxiliary hypotheses that do not contribute to any addi-
tional explanations. Because the explanation of E1 by H1
and H2 is less simple than the explanation of NE1 by H1,
the ad hoc maneuver does not succeed in saving H1 from
deactivation.

4.7. Analogy. According to Principle 3(a), analogous hy-
potheses that explain analogous evidence are coherent
with each other. Figure 7 shows relations of analogy,
derived from the input:

(EXPLAIN (H1) E1)

(EXPLAIN (H2) E1)

(EXPLAIN (H3) E3)
(ANALOGOUS {H2 H3) (EI E3))
(CONTRADICT H1 H2)

(DATA (E1 E3))
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NN
El E3

Figure 7. Analogy. The wavy lines indicatc cxcitatory links
based on analogies. H2 defeats H1 because the explanation it
gives is analogous to the explanation afforded by H3.

The analogical links corresponding to the coherence rela-
tions required by Principle 3 are shown by wavy lines.
Running this cxample leads to activation of H2 and
deactivation of its rival, Hl. Figures 3-7 show con-
silience, simplicity, and analogy operating independently
of each other, but in realistic examples these criteria can
all operate simultaneously through activation adjust-
ment. Thus ECHO shows how criteria such as explanatory
breadth, simplicity, and analogy can be integrated. My
most recent account of inference to the best explanation
(Thagard 1988a) included a computational model that
integrated breadth and simplicity but left open the ques-
tion of how to tie in analogy. Principle 3 and EcHO show
how analogy can participate with consilience and sim-
plicity in contributing toward explanatory power.

4.8. Evldence. Principle 4 asserts that data get priority by
virtue of their independent coherence. But it should
nevertheless be possible for a data unit to be deactivated.
We see this both in the everyday practice of experiment-
ers, in which it is often necessary to discard some of the
data because they are deemed unreliable (Hedges 1987),
and in the history of science where evidence for a dis-
carded theory sometimes falls into neglect {(Laudan 1976).
Figure 8, which derives from the following input, shows
how this might happen.

(EXPLAIN (H1) E1)
(EXPLAIN (H2) E2)
(EXPLAIN (H1) E3)
(EXPLAIN (H1) E4)
(EXPLAIN (H2) E2)
(EXPLAIN (H2) E5)
(EXPLAIN (H3) E3)
EXPLAIN (H3) E5)
EXPLAIN (H4) E4)

CONTRADICT H1 H2)
CONTRADICT H1 H3)
(CONTRADICT H1 H4)

These inputs lead to the deactivation of E5, dragged
down by the deactivation of the inferior hypotheses H3,
H4, and H5. Because E5 coheres only with propositions
that are themselves unacceptable, it becomes unaccept-
able too. Because HI has four excitatory links, it easily
deactivates the other three hypotheses, and their nega-
tive activation brings down the initially positive activation
of E3 into the negative range.

Principle 6(b) also concerns evidence, undermining
the acceptability of hypotheses that explain only a small
part of the relevant data. Accordingly, ECHO automati-

{
{
(EXPLAIN (i4) E5)
(
{




El E2 E3 E4 ES

Figure 8. Downplaying of evidence. E5 is deactivated, even
though it is an evidence unit, because it coheres only with
inferior hypotheses.

cally increases the vahie of a decay parameter in propor-
tion to the ratio of unexplained evidence to explained
evidence (see Appendix), A hypothesis that explains only
a fraction of the relevant evidence will thus decay toward
the beginning activation level of 0 rather than become
activated.

4.9. Acceptability and System Coherence. If EcHO is
taken as an algorithmic implementation of the first five
principles of explanatory coherence, then it validates
Principle 6, Acceptability, for it shows that holistic judg-
ments of the acceptability of a proposition can be hased
solely on pairwise relations of coherence. A unit achieves
a stable activation level merely by considering the activa-
tion of units to which it is linked and the weights on those
links. Asymptotic activation values greater than 0 signify
acceplance of the proposition represented by the unit,
whereas negative values signify rejection.

ECHO also validates Principle 7, System Coherence,
because we can borrow from connectionist models a
measure H of the global coherence of a whole system of
propositions at time ¢

H(t) = E,.ijya,.(t)aj(t) (1)
In this equation, w;, is the weight from unit { to unit j, and
a(t) is the activation of unit i at time ¢. This measure or its
inverse has been variously called the “goodness,” “ener-
gy, or “harmony” of the network (Rumelhart et al. 19886,
vol. 2, p. 13). For historical reasons, I prefer a variant of
the last term with the alternative spelling “harmany”
(Harman 1973). Thus ECHO stands for “Explanatory Co-
herence by Harmany Optimization.”

Equation 1 says that to calculate the harmany of the
network, we consider each pair of units ¢, and a, that are
linked with weight w,,. Harmany increases, for example,
when two units with F{u‘gh activation have a link between
them with high weight, or when a unit with high activa-
tion and a unit with negative activation have between
them alink with negative weight. In EcHo the harmany of
a system of propositions increases, other things heing
equal, with increases in the number of data units, the
number of links, and the number of cycles to update
activations to bring them more in line with the weights.

4.10. Parameters. The simulations just described depend
on program parameters that give ECHO numerous de-
grees of freedom, some of which are epistemologically
interesting. In the example in section 4.2 (Figure 3), the
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relation between excitatory weights and inhibitory
weights is crucial. If inhibition is low compared to excita-
tion, then ECHO will activate both H1 and H2, because
the excitation that H2 gets from E1 will overcome the
inhibition it gets from H1. Let the tolerance of the system
be the absolute value of the ratio of excitatory weight to
inhibitory weight. With high tolerance, the system will
entertain coinpeting hypotheses. With low tolerance,
winning hypotheses deactivate the losers. Typically,
ECHO is run with excitatory weights set at .05 and inhibi-
tion at —.2, so tolerance is .25. Iftolerance is high, EcHO
can settle into a state where two contradictory hypotheses
are both activated. ECHO performs well using a wide
range of parameters (see the sensitivity analyses in the
Appendix).

Other parameters establish the relative importance of
simplicity and analogy. If H1 explains E1 by itself, then
the excitatory link between H1 and E1 has the default
weight .05. But if H1 and H2 together explain El, then
the weight of the links is set at the default value divided
by 2, the number of cohypotheses, leaving it at .025. if we
want to change the importance of simplicity as incorporat-
ed in Principle 2(c), however, then we can raise the
number of cohypotheses to an exponent that represents
the simplicity impact of the system. Equation 3 for doing
this is given in the algorithm section of the Appendix. The
greater the simplicity impact, the more weights will be
diminished by having more cohypotheses. Similarly, the
weights established by analogy can be affected by a factor
representing analogy impact. If this is 1, then the links
connecting analogous hypotheses are just as strong as
those set up by simple explanations, and analogy can have
avery large effect. If, on the other hand, analogy impact is
set at 0, then analogy has no effect.

Another important parameter of the system is decay
rate, represented by 8 (see equation 4 in the Appendix).
We can term this the skepticism of the system, because
the higher it is, the more excitation from data will be
needed to activate hypotheses. If skepticism is very high,
then no hypotheses will be activated. Whereas tolerance
reflects ECHO's view of contradictory hypotheses, skep-
ticism determines its treatment of all hypotheses. Princi-
ple 6(b} can be interpreted as saying that if there is much
unexplained evidence, then ECHO's skepticism level is
raised.

Finally, we can vary the priority of the data by adjust-
ing the weights to the data units from the special unit.
Data excitation is a value from 0 to 1 that provides these
weights. To reflect the scientific practice of not treating
all data equally seriously, it is also possible to set the
weights and initial activations for each data unit sepa-
rately. If data excitation is set low, then, contrary to
section 4.2, new evidence for a rejected hypothesis will
not lead to its adoption. If data excitation is high, then,
contrary to section 4.8, evidence that supports only a bad
hypothesis will not be thrown out.

With so many degrees of freedom, which are typical of
connectionist models, one might question the value of
simulations, as it might seem that any desired behavior
whatsoever could be obtained. However, if a fixed set of
default parameters applies to a large range of cases, then
the arbitrariness is much diminished. In all the computer
runs reported in this paper, ECHO has had excitation at
.05, inhibition at —.2 (so tolerance is .25), data excitation
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at .1., decay (skepticism) at .05, simplicity impact at 1,
and analogy impact at 1. As reported in the Appendix in
the section on sensitivity analyses, there is nothing spe-
cial about the default values of the parameters: ECHO
works over a wide range of values. 1n a full simulation of a
scientist’s cognitive processes, we could imagine better
values being learned. Many connectionist models do not
take weights as given, but instead adjust them as the
result of experience. Similarly, we can imagine that part
of a scientist’s training entails learning how seriously to
take data, analogy, simplicity, and so on. Most scientists
get their training not merely by reading and experiment-
ing on their own but also by working closely with scien-
tists already established in their field; hence, a scientist
can pick up the relevant values from advisors. In ECHO
they are set by the programmer, but it should be possible
to extend the program to allow training from examples.

The examples described in this section are trivial and
show merely that EcHO has some desired properties. 1
shall now show that ECHO can handle some much more
substantial examples from the history of science and from
recent legal deliberations.

5. Applicatlons of EcHo to scientific reasoning

Theories in the philosophy of science, including com-
putational ones, should be evaluated with respect to
important cases from the history of science. To show the
historical application of the theory of explanatory co-
herence, I shall discuss two important cases of arguments
concerning the best explanation: Lavoisier’s argument for
his oxygen theory against the phlogiston theory, and
Darwin’s argument for evolution by natural selection.

ECHO has also been applied to the following:
Contemporary debates about why the dinosaurs be-
came extinct (Thagard 1988b);
Arguments by Wegener and his critics for and against
continental drift (Thagard & Nowak 1988; in press);
Psychological experiments on how beginning students
learn physics (Ranney & Thagard 1988); and
Copernicus’s case against Ptolemaic astronomy (Nowak
& Thagard, forthcoming).
Additional applications are currently under develop-
ment.

5.1. Lavolsler. In the middle of the eighteenth century,
the dominant theory in chemistry was the phlogiston
theory of Stahl, which provided explanations of important
phenomena of combustion, respiration, and calcination
(what we would now call oxidation). According to the
phlogiston theory, combustion takes place when phlo-
giston in burning bodies is given off. In the 1770s,
Lavoisier developed the alternative theory that combus-
tion takes place when burning bodies combine with
oxygen from the air (for an outline of the conceptual
development of his theory, see Thagard, in press b).
More than ten years after he first suspected the inade-
quacy of the phlogiston theory, Lavoisier mounted a full-
blown attack on it in a paper called “Réflexions sur le
Phlogistique™ {Lavoisier 1862).

Tables 1 and 2 present the input given to ECHO to
represent Lavoisier's argument in his 1783 polemic
against phlogiston. Table 1 shows the 8 propositions used
to represent the evidence to be explained and the 12 used
to represent the competing theories. The evidence con-
cerns different properties of combustion and calcination,
while there are two sets of hypotheses representing the

Table L. Input propositions for Lavoisier (1862) example

Evidence
(proposition ‘EI
(proposition ‘E2
(proposition ‘E3
(proposition ‘E4

absorbed.™)
(proposition ‘E5

“In combustion, heat and light are given off.”)

“Inflammability is transmittable from one body to another.”)
“Combusion only occurs in the presence of pure air.”)

“Increase in weight of a burned body is exactly equal to weight of air

“Metlals undergo ealcination.”)

(proposition ‘E6  “In calcination, bodies inercase weight.”)

(proposition ‘E7
(proposition ‘E8

Oxygen hypotheses

“In caleination, volume of air diminishes.”)
“In reduction, effervescence appears.”)

(proposition ‘'OHI “Pore air contains oxygen principle.”)
(proposition ‘OH2 “Pure air contains matter of fire and heat.”)
(proposition ‘OH3 “In combustion, oxygen from the air combines with the burning

body.”}

(proposition ‘OH4 “Oxygen has weight.”)

(proposition ‘OH5 “In calcination, metals add oxygen to become calxes.”)
(proposition ‘OH6 “In reduction, oxygen is given off.”)

Phlogiston hypotheses

(proposition ‘PHI “Combustible bodies contain phlogiston.”)
(proposition ‘PH2 “Combustible bodies contain matter of heat.™
(proposition ‘PH3 “In combustion, phlogiston is given off.”)
(proposition ‘PH4 “Phlogiston can pass from one body to another.”)
{proposition "PH5 “Metals contain phlogiston.”)

(proposition ‘PH6 “In calcination, phlogiston is given off.”)
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Table 2. Input explanations and contradictions in
Lavoisier {1862) example

Oxygen explanations
(explain {OH1 OH2 OH3) ‘E1)
(explain {OH1 OH3) ‘E3)
{explain (OH1 OH3 OH4) ‘E4)
(explain ‘(OH1 OHS5) ‘E5)
(explain (QH1 OH4 OH5) ‘ES)
(explain "(QH1 OH5) ‘E7)
(explain (OH1 OHS6) ‘E8)

Phlogiston explanations
(explain (PH1 PH2 PH3) ‘El)
(explain (PH1 PH3 PH4) ‘E2)
(explain (PH5 PHS6) ‘E5)
Contradictions

(contradict ‘PH3 ‘OH3)
(contradict “PH6 ‘OH5)

Data
(data (E1 E2 E3 E4 E5 E6 E7 ES8))

oxygen and phlogiston theories, respectively. These
propositions do not capture Lavoisier’s argument com-
pletely but do recapitulate its major points. (In a slightly
more complicated simulation not presented here, 1 have
encoded the attempt by the phlogiston theory to explain
the increase in weight in combustion and calcination by
the supposition that phlogiston has negative weight; La-
voisier argues that this supposition renders the phlo-
giston theory internally contradictory, because phlo-
giston theorists sometimes assumed that phlogiston has
positive weight.)

Table 2 shows the part of the input that sets up the
network used to make a judgment of explanatory co-
herence. The “explain” statements are based directly on
Lavoisier’s own assertions about what is explained by the
phlogiston theory and the oxygen theory. The “contra-
dict” statements reflect my judgment of which of the
oxygen hypotheses conflict directly with which of the
phlogiston hypotheses.

These explanations and contradictions generate the
network partially portrayed in Figure 9. Excitatory links,
indicating that two propositions cohere, are represented
by solid lines. lnhibitory links are represented by dotted
lines. All the oxygen hypotheses are arranged along the
top line and all the phlogiston hypotheses along the
bottom, with the evidence in the middle. Omitted from
the figure for the sake of legibility are the excitatory links
among the hypotheses of the two theories and the links
between the evidence units and the special unit. ln
addition to its displayed links to evidence, OH] has
excitatory links to OHZ, OH3, OH4, OH5, and OH6. The
link between OH1 and OH3 is particularly strong, be-
cause these two hypotheses participate in three explana-
tions together. Figure 10, produced by a graphics pro-
gram that runs with Ecto, displays the links to OH3, with
excitatory links shown by thick lines and the inhibitory
link with PH3 shown by a thin line. The numbers on the
lines indicate the weights of the links rounded to three
decimal places: In accord with Principle 2(c), weights are
different from the default weight of .05 whenever multi-
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PH1 PH2 PH3 FH4 PHS PH6

Figure 9. Network representing Lavoisier’s (1862) argument.
E1-E8 are evidence units. OH1-OHS6 are units representing
hypotheses of the oxygen theory; PHI-PH6 represent the
phlogiston hypotheses. Solid lines are excitatory links; dotted
lines are inhibitory.

ple hypotheses are used in an explanation. 1f the hypoth-
eses participate in only one explanation, then the weight
between them is equal to the default excitation divided by
the number of hypotheses; but weights are additive, so
that the weight is increased if two hypotheses participate
in more than one explanation. For example, the link
between OH3 and El has the weight .017 ( 0166666
rounded), because the explanation of E]1 by OH3 re-
quired two additional hypotheses. The weight between
OH3 and OHI is .058 (.025 + .0166666 + .0166666),
because the two of them alone explain E3, and together
they explain E1 and E4 along with a third hypothesis in
each case. OH1 and OH3 are thus highly coherent with
each other by virtue of being used together in multiple
explanations.

The numbers beneath the names in Figure 10 indicate
the final activation of the named units, rounded to three
decimal places. When ECHO runs this network, starting
with all hypotheses at activation .01, it quickly favors the
oxygen hypotheses, giving them activations greater than
0. In contrast, all the phlogiston hypotheses become
deactivated. The activation history of the propositions is
shown in Figure 11, which charts activation as a function
of the number of cycles of updating. Figure 11 shows
graphs, produced automatically during the run of the
program, of the activations of all the units over the 107
cycles it takes them to reach asymptote. In each graph,
the horizontal line indicates the starting activation of 0
and the y axis shows activation values ranging between 1
and —1. Notice that the oxygen hypotheses OH1-OH6
rise steadily to their asymptotic activations, while PH3
and PH6, which directly contradict oxygen hypotheses,
sink to activation levels well below 0. The other phlo-
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Figure 10.

Conneetivity of oxygen theory unit OH3. The numbers under the units are their activation values after the unit has

settled. Thick lines indicate excitatory lnks; thin line indieates inhibitory link. Numbers on the lines indicate the weights on the links.

giston hypotheses that are not directly contradicted by
oxvgen hypotheses start out with positive activation but
are dragged down toward 0 through their links with their
deactivated cohypotheses. Thus the phlogiston theory
fails as a whole.

This run of ECHO is biased towards the oxygen theory
because it was based on an analysis of Lavoisier's argu-
ment. We would get a different network if ECHO were
used to model critics of Lavoisier such as Kirwan
(1789/1968), who defended a variant of the phlogiston
theory. By the late 1790s, the vast majority of chemists
and physicists, including Kirwan, had accepted La-
voisier’s arguments and rejected the phlogiston theory, a
turnaround contrary to the suggestion of Kuhn (1970)
that scientific revolutions occur only when proponents of
an old paradigm die off.

Lavoisier’s argument represents a relatively simple
application of ECHO, showing two sets of hypotheses
competing to explain the evidence. But more complex

446 BEHAVIORAL AND BRAIN SCIENCES (1989) 12:3

explanatory relations can also be important. Sometimes a
hypothesis that explains the evidence is itself explained
by another hypothesis. Depending on the warrant for the
higher-level hypothesis, this extra explanatory layer can
increase acceptability: A hypothesis gains from being
explained as well as by explaining the evidence. The
Lavoisier example does not exhibit this kind of co-
herence, because neither Lavoisier nor the phlogiston
theorists attempted to explain their hypotheses using
higher-level hypotheses; nor does the example display
the role that analogy can play in explanatory coherence.

5.2. Darwin. Both these aspects — coherence based on
being explained and on analogy — were important in
Darwin's argument for his theory of evolution by natural
selection (Darwin 1962). His two most important hypoth-
eses were:
DH2 - Organic beings undergo natural selection.
DH3 - Species of organic beings have evolved.
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Figure 11.  Activation history of Lavoisier (1862) network. Each graph shows the activation ofa unit over 107 cycles of updating, on a
scale of —1 to 1, with the horizontal line indicating the initial activation of 0.

These hypotheses together enabled him to explain a host
of facts, from the geographical distribution of similar
species to the existence of vestigial organs. Darwin’s
argument was explicitly comparative: There are numer-
ous places in the Origin where he points to phenomena
that his theory explains but that are inexplicable on the
generally accepted rival hypothesis that species were
separately created by God.

Darwin’s two main hypotheses were not simply co-
hypotheses, however, for he also used DH2 to explain
DH3! That is, natural selection explains why species
evolve: If populations of animals vary, and natural selec-
tion picks out those with features well adapted to particu-
lar environments, then new species will arise. Moreover,
he offers a Malthusian explanation for why natural selec-
tion occurs as the result of the geometrical rate of popula-
tion growth contrasted with the arithmetical rate of in-
crease in land and food. Thus Malthusian principles
explain why natural selection takes place, which explains
why evolution occurs, and natural selection and evolution

together explain a host of facts better than the competing
creation hypothesis does.

The full picture is even more complicated than this, for
Darwin frequently cites the analogy between artificial
and natural selection as evidence for his theory. He
contends that just as farmers are able to develop new
breeds of domesticated animals, so natural selection has
produced new species. He uses this analogy not simply to
defend natural selection, but also to help in the explana-
tions of the evidence: Particular explanations using natu-
ral selection incorporate the analogy with artificial selec-
tion. Finally, to complete the picture of explanatory
coherence that the Darwin example offers, we must
consider the alternative theological explanations that
were accepted by even the best scientists before Darwin
proposed his theory.

Analysis of On the origin of species suggests the 15
evidence statements shown in Table 3. Statements E1—
E4 occur in Darwin’s discussion of objections to his
theory; the others are from the later chapters where he
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Table 3. Explanations and contradictions for Darwin (1962) example

Darwin’s evidence
(proposition ‘E1
(proposition 'E2
(proposition ‘E3
{proposition ‘E4
{proposition ‘E5
{proposition ‘E&
{(proposition ‘E7
(proposition 'E8
(proposition ‘E9
(proposition ‘E10
(proposition ‘E11
{proposition ‘E12
{proposition ‘E13
{proposition ‘E14
(proposition ‘E15

“The fossil record contains few transitional forms.”)
“Animals have complex organs.”)

“Animals have instincts.”)

“Species when crossed become sterile.”)

“Species become extinct.”)

“Once extinet, species do not reappear.”)

“Barriers separate similar speeies.”)
“Related species are concentrated in the same areas.”)

“Species show systematie affinities.”)

“Different species share similar morphology.”)
“The embryos of different species are similar.”)
“Animals have rudimentary and atrophied organs.”)

Darwin’s main hypotheses
(proposition ‘DH1 “Organic beings are in a struggle for existence.”)
{proposition ‘DH2 “Organic beings undergo natural selection. ™)
{proposition ‘DH3 “Species of organie beings have evolved.™)

“Forms of life change almost simultaneously around the world.”)
“Extinct species are similar to each other and to living forms.”)

“Oceanic islands have few inhabitants, often of peculiar species.”)

Darwin’s auxiliary hypotheses

{Proposition ‘DH4 “The geological record is very imperfect.”)

(proposition 'DH5
(proposition ‘DH6

Darwin’s facts
{proposition ‘DF1
{proposition ‘DF2
{proposition ‘DF3

“There are transitional forms of eomplex organs.”)
“Mental qualities vary and are inherited.”)

“Domestic animals undergo variation.”)
“Breeders select desired features of animals.”)
“Domestic varieties are developed.”)

{proposition ‘DF4 “Organic beings in nature undergo variation.”)
(proposition ‘DF5 “Organic heings increase in population at a high rate.”)
{proposition ‘DF6 “The sustenance available to organic beings does not increase at a

high rate.”)

{proposition ‘DF7 “Embryos of different domestic varieties are similar.”)

Creationist hypothesis

(proposition ‘CH1  “Species were separately created by God.™)

argues positively for his theory. Table 3 also shows Dar-
win’s main hypotheses. DH2 and DH3 are the core of the
theory of evolution by natural selection, providing expla-
nations of its main evidence, E5—E15. DH4-DHB6 are
auxiliary hypotheses that Darwin uses in resisting objec-
tions based on E1-E3. He considers the objection con-
cerning the absence of transitional forms to be particu-
larly serious, but explains it away by saying that the
geological record is so imperfect that we should not
expect to find fossil evidence of the many intermediate
species his theory requires. Darwin’s explanations also
use a variety of facts he defends with empirical arguments
that would complicate the current picture too much to
present here. Hence, I will treat them (DF1-DF7) sim-
ply as pieces of evidence that do not need explanatory
support. The creationist opposition frequently men-
tioned by Darwin is represented by the single hypothesis
that species were separately created by God.

Table 4 shows the explanation and contradiction state-
ments that ECHO uses to set up its network, which is
partially displayed in Figure 12. Notice the hierarchy of
explanations, with the high rate of population increase
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explaining the struggle for existence, which explains
natural selection, which explains evolution. Natural se-
lection and evolution together explain many pieces of
evidence. The final component of Darwin's argument is
the analogy between natural and artificial selection. The
wavy lines represent excitatory links based on analogy.
Just as breeders’ actions explain the development of
domestic varieties, so natural selection explains the evo-
lution of species. At another level, Darwin sees an em-
bryological analogy. The embryos of different domestic
varieties are quite similar to each other, which is ex-
plained by the fact that breeders do not select for proper-
ties of embryos. Similarly, nature does not select for most
properties of embryos, which explains the many sim-
ilarities between embryos of different species.
Darwin’s discussion of objections suggests that he
thought creationism could naturally explain the absence
of transitional forms and the existence of complex organs
and instincts. Darwin's argument was challenged in many
ways, but based on his own view of the relevant explana-
tory relations, at least, the theory of evolution by natural
selection is far more coherent than the creation hypoth-




Table 4. Explanations and contradictions for Darnwin
example

Darwin’s explanations
(@) of natural selection and evolution
{explain ‘(DF5 DF6) ‘DH1)
(explain (DH1 DF4) ‘DH2)

(explain (DH2) ‘DH3)

(b) of potential counterevidence
(explain (DH2 DH3 DH4) ‘E1)
(explain ‘(DH2 DH3 DH5) ‘E2)
explain (DH2 DH3 DH6) ‘E3)

(
(c) of diverse evidence
(explain (DHZ2) ‘E5)
{explain ‘(DH2 DH3) ‘E6)
{explain (DHZ2 DH3) ‘E7)
(explain (DH2 DH3) ‘ES)
(explain (DHZ DH3) ‘E9)
(explain (DHZ2 DH3) ‘E10)
(explain (DH2 DH3) ‘E12)
(explain (DH2 DH3) ‘E13)
{explain (DH2 DH3) ‘E14)
(explain {DH2 DH3) ‘E15)
a

Darwin’s analogies
{explain (DF2) ‘DF3)
{explain (DF2) ‘DF7)
{analogous (DF2 DH2) (DF3 DH3)
{analogous (DF2 DH2) (DF7 E14))

Creationist explanations
(explain {CH1) ‘E1)
{(explain (CHI1) ‘E2)
{(explain (CH1) ‘E3)
(explain (CH1) ‘E4)

Contradiction
{contradict ‘CH1 ‘DH3)

Data
(data (E1 E2E3E4 E5E6 ETESEY9EI0E11 E12 E13
El4 E13)
(data (DF1 DF2 DF3 DF4 DF5 DF6 DF7))

esis. Creationists, of course, would marshal different
arguments.

For clarity, Figure 12 omits the links from DH2 to all
the evidence propositions besides E5, and the links from
DHZ2and DH3to DH4, DHS5, and DH6. Figure 13 shows
the actual connectivity of DH3. Running ECHO to adjust
the network to maximize harmany produces the expected
result: Darwin’s hypotheses are all activated, whereas the
creation hypothesis is deactivated. In particular, the
hypothesis DH3 — that species evolved — reaches an
asymptote at .921, while the creation hypothesis, CHI,
declines to —.491. DH3 accrues activation in three ways.
It gains activation from above, from being explained by
natural selection, which is derived from the struggle for
existence, and from below, by virtue of the many pieces of
evidence it helps to explain. In addition, it receives
activation by virtue of the sideways, analogy-based links
with explanations using artificial selection. Figure 14
graphs the activation histories of most of the units over
the 70 cycles it takes them to settle. Note that the
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creationist hypothesis, CHI, initially gets activation by
virtue of what it explains, but is driven down by the rise of
DHS3, which contradicts it.

The Lavoisier and Darwin examples show that ECHO
can handle very complex examples of actual scientific
reasoning. One might object that in basing ECHO analyses
on written texts, I have been modeling the rhetoric of the
scientists, not their cognitive processes. Presumably,
however, there is some correlation between what we
write and what we think. ECHO could be equally well
applied to explanatory relations that were asserted in the
heat of verbal debate among scientists. Ranney and
Thagard (1988) describe ECHO’s simulation of naive sub-
jects learning physics, where the inputs to ECHO were
based on verbal protocols.

6. Applications of ecHo to legal reasoning

Explanatory coherence is also important for some kinds of
legal reasoning. Most discussions of legal reasoning con-
cern either deductive inference, in which legal princi-
ples, rules, or statutes are applied to particular cases, or
analogical inference, in which past cases are used as
precedents to suggest a decision in a current case (Carter
1984; Gardner 1987; Golding 1984). Recently, however,
some attention has been paid to the role of explanatory
inferences in legal reasoning (Hanen 1987; Pennington &
Hastie 1986; 1987). These researchers are concerned
primarily with inferences made by juries about factual,
rather than legal, questions. In murder trials, for exam-
ple, juries can be called upon to infer what happened,
choosing between contradictory accounts provided by
the prosecution and the defense. To get a conviction on a
first-degree murder charge, the prosecution must show
(1) that the accused killed the victim and (2) that the
accused did so with a previously formed purpose in mind.
The first proposition must account for much of the evi-
dence; the second provides one possible explanation of
the first. The defense may try to defend alternative
hypotheses, such as that someone else killed the victim or
that the accused acted in self-defense and therefore is
innocent, or that the accused acted in the heat of the
moment and is therefore guilty only of manslaughter. The
defense need not provide an alternative explanation of
the killing, but may undermine the explanatory co-
herence of the prosecution’s account by providing alter-
native interpretations of key testimony. For example, in
the Peyer murder trial discussed below, the defense tried
to discredit two important witnesses for the prosecution
who had come forward just before the trial (a year after
the killing) by saying that they were merely seeking
publicity and had not seen what they claimed.

In terms of my theory of explanatory coherence and
ECHO, we can think of the prosecution and defense as
advocating incompatible ways of explaining the evidence.
But, as in scientific reasoning, explanatory inference in
the legal domain is not simply a matter of counting which
of two hypotheses explains the most pieces of evidence.
More complicated organizations of hypotheses and evi-
dence will often arise. The hypothesis that the accused
intended to kill the victim will be more plausible if we can
explain why the accused had it in for the victim, say,
because of a previous altercation. Analogy can also play a
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Figure 12. Network representing Darwin’s {1962) argument. E1-E15 are evidence units. DH2 represents natural selection, and
DH3 represents evolution of species. These defeat CH1, which represents the hypothesis that species were independcntly created.

Solid lines are exeitatory links; dotted line is inhibitory.

role: Pennington and Hastie (1986, p. 254) report that
jurors sometimes evaluate the plausibility of explanations
by considering how they would act in analogous situa-
tions. For example, a juror might reason, “If the victim
had done to me what he did to the accused, then I would
be angry and would want to get back at him, so maybe the
accused did intend to kill the victim.” Explanatory in-
ferences can also be relevant to evaluating the testimony
of a witness. If a witness who was a good friend of the
accused says they were together at the time of the
murder, the jury has to decide whether the best explana-
tion of the witness’s utterance is that (a) the witness really
believe it or (b) the witness was lying to protect the
accused.

The plausibility of a theory of explanatory coherence
for legal reasoning depends on its application to real
cases. ECHO has been used to model reasoning in two
recent murder trials: the “preppy” murder trial in which
Robert Chambers was accused of murdering Jennifer
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Levin in New York City and the San Diego trial in which
Craig Pever was accused of murdering Cara Knott. In
both cases, there were no witnesses to the killing, so the
juries had to infer on the basis of circumstantial evidence

what actually happened.

6.1. Chambers. On August 26, 1986, Robert Chambers,
by his own admission, killed Jennifer Levin in Central
Park after the two had left a bar together. He maintained,
however, that the killing was accidental, occurring when
he struck her by reflex when she hurt him during rough
sex. The prosecution maintained, in contrast, that he had
killed her intentionally during a violent struggle. The trial
took place in the first three months of 1988 and was
extensively reported in the press. The following ECHO
analysis is based on daily reports in the New York Times
that described the major testimony and arguments. This
information is, of course, not nearly as complete as that
presented in the courtroom itself, but it suffices for
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Figure 13.  Connectivity of unit DH3 in the Darwin network. The numbers under the units are their activation values after the unit
has settled. Thick lines indicate excitatory links; thin line indicates inhibitory link. Numbers on the lines indicate the weights on the

links.

displaying the structure of a very complex explanatory
inference (see also Taubman 1988).

The input to ECHO is shown in Tables 5 and 6. G1-G7
are hypotheses used by the prosecution to argue for
Chambers’s guilt, whereas I1-18 present a very different
explanatory account that supports his innocence. Figure
15 shows part of the network produced by this input, with
excitatory links shown by solid lines and inhibitory ones
shown by dotted lines (NE4 and NE9 are omitted to
relieve crowding). The evidence propositions EO-E16
are indicated by number alone. Notice the layers of
explanations: I3 explains 14, which explains 11, which
explains E4. The prosecution’s case does a better job of
explaining the physical evidence using hypotheses con-
cerning a struggle and a strangling. I have included two
units, G6 and G7, to represent the question of Cham-
bers’s intent, which is crucial for deciding whether he is
guilty of second-degree murder (he intended to kill her)

or manslaughter (he intended merely to hurt her).

Running the network produces a clear win for G1, the
main hypothesis implying Chambers’s guilt. Figure 16
shows the links to G1 and the asymptotic activation of the
units linked to it. Figure 17 displays the activation histo-
ries of all the units over 80 cycles. In the actual trial, the
jury never got a chance to finish deciding the second-
degree murder charge because a manslaughter plea-
bargain was arranged during their deliberations. One
important aspect that is not directly displayed in this
simulation is the notion of determining guilt “beyond a
reasonable doubt.” Perhaps hypotheses concerning inno-
cence should receive special activation so that hypotheses
concerning guilt have to be very well supported to over-
come them. Alternatively, we could require a high toler-
ance level so that guilt hypotheses would only be able to
deactivate innocence hypotheses that were markedly
inferior,
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Figure 14.  Activation history of the Darwin network. Each graph shows the activation of a unit over 49 cycles of updating, on a scale
of —1 to 1, with the horizontal line indicating the initial activation of 0.

6.2. Peyer. Let us now consider another recent trial,
where the evidence was less conclusive. Cara Knott was
killed on December 27, 1986, and Craig Peyer, a veteran
California Highway Patrolman, was accused. Twenty-two
women, young and attractive like the victim, testified
that they had been pulled over by Peyer for extended
personal conversations near the stretch of road where
Knott’s body was found. The trial in San Diego ended
February 27, 1988, and ECHO analysis is based on very
extensive coverage {two full pages) that appeared the next
day in the San Diego Union and the San Diego Tribune.

Tables 7 and 8 show the inputs to ECHO representing
the evidence, hypotheses, and explanatory and contra-
dictory statements in the Peyer trial. As in the Chambers
representation, the G propositions are hypotheses con-
cerning Peyer’s guilt, whereas the I propositions concern
his innocence. The prosecution can be understood as
arguing that the hypothesis that Pever killed Knott is the
best explanation of the evidence, whereas the defense
contends that the evidence does not support that clain
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beyond a reasonable doubt. Figure 18 shows the network
ECHO sets up using the input given to it. Figure 19 shows
the connectivity of the unit G1 along with the asymptotic
activation of units linked to it, and Figure 20 graphs the
activation histories of most of the units, omitting E1 and
E2 for lack of space.

Peyer's trial ended in a hung jury, with seven jurors
arguing far conviction on the second-degree murder
charge and five arguing against it; the case is being
retried. Figure 20 shows that EcHO finds more explanato-
ry coherence in the guilt hypotheses than in the inno-
cence hypotheses, although the activation of some of the 1
units shows that, in part, the defense had a more convine-
ing case. Why, then, were some jurors reluctant to
convict? It could, in part, be the question of establishing
guilt beyond a reasonable doubt. The sensitivity analyses
reported in the Appendix {see Table 11) show that ECHO
rejects the hypothesis of Peyer's innocence much less
strongly than it rejects the hypothesis of Chambers’s
innocence. With greater tolerance accruing from some-
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Table 5. Input propositions for Chambers case

Evidence
{(proposition “E0
(proposition ‘E1
(proposition “E2
{proposition 'E3
(proposition ‘E4

“L died.”)

“L had wounds on her neck.”)

“L said she liked sex with C.”)

“L’s blouse was around her neck.”)
“L’s panties were not found near her.”)

{proposition ‘NE4 “L’s panties were found near her.”)

(proposition ‘E5
{proposition ‘E6
(proposition ‘E7
(proposition ‘E8
(propuosition ‘E9

“The police were careless about evidence.”)

“C lied to L’s friend about not having seen L.”)

“C had scratches on his face and cuts on his hands.”)
“C had a broken hand.”)

“The skin on C’s hand was not broken.”)

(proposition ‘NE9 “The skin on C's hand was broken.”)

(proposition ‘E10
{proposition ‘E11
{proposition ‘E12
{proposition ‘E13
{proposition 'E14
(proposition ‘E15
(proposition ‘E16

“L'’s face was dirty.”)

Hypotheses that Chambers is guilty
(proposition ‘Gl “C strangled L.”)
(proposition ‘G2  “C and L struggled.”)
(proposition ‘G3
{proposition ‘G4
{propesition ‘G5
(proposition ‘G6
(proposition ‘G7

“C intended to kill L.™)

Hypotheses that Chambers is innocent
(proposition ‘I1
(proposition ‘12
(proposition ‘I3
{proposition T4
{proposition ‘I5
(proposition 16
{proposition ‘17
(proposition ‘I8

“L's left eye was swollen and her mouth was eut.”)

“L had pinpoint hemorrhages in eye tissue.”)

“L’s neck had severe hemorrhages.”)

“Bloodstains of C’s type were found on L's jacket.”)
“C’s fingers were bitten.”)

“C’s video said he had hit her once.”)

“C lied about what happened.™)
“L’s neck was held for at least 20 seconds.™)
“C broke his hand punching L.")

“C intended to hurt L but not kill her.”)

“C killed L with a single blow."”)

“The marks on L’s neck were a scrape from C's watchband.™)
“L. was having sadistic sex with C.”)

“L squeezed C’s testicles.”)

“The police moved L’s panties.”)

“C broke his hand falling on a rock.™)

“C threw L over his shoulder.”)

“C’s blow triggered earotid sinus reflex.”)

Note: L is Jennifer Levin; C is Robert Chambers.
Source: Data gathered from daily reports in the New York Times over a three-month period in

1988; see also Taubman (1988).

what higher excitation or lower inhibition, the unit repre-
senting Peyer’s innocence is not deactivated.

It is also possible that matters extraneous to explanato-
ry coherence were playing the key role in convincing
some of the jurors against conviction, One juror was
quoted as saying that a California Highway Patrolman
with 13 vears of service could never have coinmitted a
murder. This line of reasoning is represented partially by
I8, which in the above simulation is swamped by G1, but
a juror could give E17 {Peyer’s spotless record) such a
high priority that I8 could defeat G1. The simulation here
is not claimed to handle all the factors that doubtless go
into real jurors’ decisions: “T could tell he was lying
because he had shifty eves,” “The defense lawyer was
such a nice man,” “If he wasn’t guilty of this, he was guilty
of something else just as bad,” and so on. But ECHO
successfully handles a large part of the evidence and
hypotheses in these two complex cases of legal reasoning.

7. Limitations of eEcHo

It is important to appreciate what ECHO cannot do as well
as what it can. The major current limitation on ECHO is
that the input propositions, explanation statements, and
contradiction statements are constructed by the program-
mer. How arbitrary are these encodings? Several differ-
ent people have successfully done ECHO analyses, on
more than a dozen disparate cases. In all four of the
examples presented in this paper, virtually no adjustment
of input was required to produce the described runs. We
have not vet done the experiment of having several
people analyze the same case and assessing the intercoder
reliability, however. We can nevertheless maintain that
the representations are not arbitrary thought experi-
ments, because they are derived from scientific texts,
newspaper reports of trials, and subject protocols.
ECHO's scope is not universal: Not every case of reason-

BEHAVIORAL AND BRAIN SCIENCES (1989) 12:3 453




Thagard: Explanatory coherence

Table 6. Explanations and contradictions
in Chambers example

Data
(data (E0 E1 E2 E3 E4 ES E6 E7 E8 E9 E10 E11 EI12 E13
El4 E15 E16))

Contradictions
(contradict ‘G1 11)
{contradict ‘G4 ‘11)
(contradict ‘G5 ‘16)
(contradict ‘G1 ‘12)
{contradict ‘G2 ‘13)
(contradict ‘G6 ‘G7)
(contradict ‘E4 "NE4)
(contradict ‘E9 'NE9)

Explanations supporting Chambers’s innocence
(explain ‘(11 18) "E0)

(explain (12) ‘E1)
(explain (13} “14)
(explain ‘(14) 11}
(explain (13 15) 'E4)
(explain (16) ‘E8)
(explain ‘(16) ‘NE9)
(explain (17) ‘E12)
(explain (13) ‘E15)
(explain *(11) ‘E18)

Explanations supporting Chambers’s guilt
(explain (G2) ‘G1)

(explain (G2) 'E3)
{explain (G2) ‘E4)
(explain (G2) ‘E7)
(explain (G2) "E12)
(explain (G1) ‘G4)
(explain ‘(G1) 'E0)
(explain (G1) ‘E1)
(explain (CG2) ‘E10)
(explain (G2) ‘E11)
(explain (G4) "E13)
(explain *(G2) ‘E14)
(explain (G2) ‘E15)
(explain (G5) 'E8)
(explain (G5) ‘E9)
(explain (G3) ‘E16)
{explain (G3) ‘E6)
(explain (G6) ‘G1)
(explain (G7) ‘G1)
(explain (G2) ‘G7)

ing can be analyzed for ECHO’s application. In doing our
analyses, we try to restrict the EXPLAIN statements to
cases where there is a causal relation. A research assistant
attempted to use ECHO to analyze arguments in this
journal for and against parapsychology (Rao & Palmer
1987; Aleock 1987), but concluded that ECHO was not
appropriate. This debate largely concerns the reliability
of parapsychological experiments, and ECHO is not a data
analyzer. ECHO would be appropriate for this case only if
there were a general parapsychological theory whose
explanatory coherence could be evaluated. The general
conclusion of Rao and Palmer is that parapsychological
experiments are not explainable with current science, but
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that conclusion is not in itself an explanation of the
experiments.

From alogical point of view, the analysis of explanatory
relations is easily trivialized. The explanations of E1 and
E2 by hypotheses H1 and H2 together can be collapsed
logically by conjoining E1 and E2 into E3, and H1 and H2
into H3, so that we are left with only the boring explana-
tion of E3 by H3. Fortunately, in real disputes in law and
the history of science, such trivializations do not occur.
We can easily get the appropriate level of detail by
attending to the claims that scientists and lawyers make
about the explanatory power of their theories. Lavoisier
and the phlogiston theorists operated at roughly the same
level of detail. In analyzing texts to assess explanatory
coherence, I recommend the following maxim:

Detail Maxim.

In analyzing the propositions and explanatory relations rele-
vant to evaluating competing theories, go into as much detail as
is needed to distinguish the explanatory claims of the theories
from each other, and be careful to analyze all theories at the
same level of detail.

Following this maxim removes much of the apparent
arbitrariness inherent in trying to adjudicate among
theories.

Ideally, we would want to automate the production of
the input to ECHO. This could be done either in a natural
language system capable of detecting explanatory argu-
ments (cf. Cohen, R. 1983} or, more easily, in an inte-
grated system of seientific reasoning that formed explana-
tory hypotheses which could then be passed to ECHO for
evaluation. PI (which is short for “processes of induction”
and is pronounced “pie”) is a crude version of such a
system (Thagard 1988a). In PI, it is possible to represent
hypotheses like those in the scientific examples discussed
above using rules. One of Lavoisier’s principles might be
translated into the rule:

If x is combustible and x combines with oxygen, then x burns.

Like other rule-based systems, PI can use such rules to
make inferences. Given a set of such rules, PI can be set
the task of explaining other rules representing the evi-
dence. While PI runs, it is possible to keep track of which
rules were used in explaining which pieces of evidence.
Thus explanation from this computatianal point of view is
a process of derivation that can be inspected to determine
what was actually used in deriving what. Tracing back to
which hypotheses were used in deriving which evidence
could generate the EXPLAIN formulas that are input for
ECHO. Because PI does not have the rules of inference
that permit logicians to cancoct nonexplanatory deduc-
tions — for example, to infer (A or B) from A - we can
identify what hypotheses played a role in explaining what
pieces of evidence. Putting together all the rules to make
up Lavoisier’s theory and furnish explanations is a daunt-
ing task, because his writings and my summary for ECHO
omit much background knowledge that would have to be
dredged up and included if the derivations were to look
complete. But artificial intelligence models of problem
solving and learning such as PI provide at least a glimpse
of how explanations can be noticed. Falkenhainer and
Rajamoney (1988) describe a system that combines hy-
pothesis formation by analogy with hypothesis evaluation
by experimental design. So eventually it should be possi-
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Figure 15.  Network representing the Chambers trial. 1-16 are evidence units. G1-G7 represent hypotheses concerning
Chambers’s guilt; I1-18 represent his innocence. Selid lines arc exeitatory links; dotted lines are inhibitory.

ble to integrate ECHO with a systemn that generates expla-
nations and provides its input automatically.

ECHO is a very natural way of implementing the pro-
posed theory of explanatory coherence, but ane might
argue for the construction of a nonconnectionist co-
hcrence model. Perhaps it could be based on simple rules
such as the follawing:

(1) 1f a proposition is a piece of evidence, then accept
it.

(2) If a proposition contradicts an accepted proposi-
tion, then reject it.

(3) Of two contradictory hypotheses, accept the one
that coheres (by virtue of explanatory and analogical
relations) with more accepted propositions and has fewer
cohypotheses.

(4) Ifa proposition does not contradict any other prop-
ositions, accept it if it coheres with more accepted propo-
sitions than rejected ones.

Analysis suggests that an implementation of such rules
could be a fair approximation to ECHO for manv cases, but
would lack several advantages that derive from ECHO's
connectionist algorithms. First, rules such as (1) and (2)
are much too categorical. ECHO is capable of rejecting a
piece of evidence if it coheres only with a very inferior
theory (section 4.8), just as scientists sometimes throw
out data, Similarly, a hypothesis should not be rejected

just because it makes a false prediction, because addi-
tional assumptions may enable it to explain the evidence
and explain away the negative result. Second, the rule-
based implementation would be very sensitive to the
order of application of rules, requiring that the four rules
stated above be applied in approximately the order given.
Moreover, if a hypothesis is contradicted by two other
propositions, it will be important to evaluate the other
propositions first so that together they can count against
the given hypothesis, otherwise it might be accepted and
then knock them out one at a time. ECHO's parallelism
enables it to evaluate all propositions simultaneously, so
these undesirable order effects do not arise. Third, rules
(3) and (4) above should not operate in isolation from one
another: In our simulation of Wegener's argument for
continental drift (Thagard & Nowak 1988), units repre-
senting the views that Wegener rejects become deacti-
vated because of a combination of being contradicted and
being coherent with rejected propositions. Fourth, the
rule-based system’s use of the binary categories of accep-
tance and rejection will prevent it from having the sen-
sitivity of ECHO in indicating degrees of acceptance and
rejection by degrees of activation. Fifth, the rule-based
system does not come with a metric for system coherence
(section 4.9). Thus, although ECHO is not the only possi-
ble means for computing coherence, its connectionist
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Figure 16. Connectivity of the unit G1, representing the claim that Chambers strangled Levin. The numbers under the units are
their activation values after the unit has settled. Thiek lines indicate excitatory links; thin lines indicate inhibitory links. Numbers on

the lines indicate the weights on the links.

algorithms give it many natural advantages over alter-
native approaches.

Finally, as an implementation of a theory of explanato-
ry coherence, EGHO is only as good as the principles in
that theory. The seven principles of explanatory co-
herence seem now to be complete enough to characterize
a wide range of cases of hypothesis evaluation, but they
are themselves hypotheses and therefore subject to
revision.

8. Implications for artificial intelligence

The theory of explanatory coherence and its implementa-
tion in ECHO have implications for research in the areas of
artificial intelligence, cognitive psychology, and philoso-
phy. Like the evaluation of scientific theories, the evalua-
tion of philosophical and computational theories is a
comparative matter. While discussing the computational,
psychological, and philosophical significance of the ap-
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proach proposed here, I shall compare it with similar
research in these fields.

8.1. Connectlonism. Very recently, other researchers
have also suggested connectionist models for the evalua-
tion of explanatory hypotheses. Peng and Reggia (in
press) describe a connectionist model for diagnostic prob-
lem solving. Theoretically, it differs from my proposal
most in that it does not use constraints involving sim-
plicity (in the sense indicated by Principle 2[c]), analogy,
and the desirability of a hypothesis being explained as
well as explaining. Their implementation differs from
ECHO most strikingly in that it does not use inhibitory
links between units representing incompatible hypoth-
eses, but instead has nodes competing for activation from
the output of a source node. Goel et al. (1988) propose an
architecture that chooses the best explanation by consid-
ering explanatory coverage of data, number of hypoth-
eses, and prior plausibility of hypotheses. ECHO uses the
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Figure 17.  Activation history of the Chambers network. Each graph shows the activation of a unit over 59 cycles of updating, on a
scale of —1 to 1, with the horizontal line indicating the initial activation of 0.

first two of these criteria, but not the third, because in the
domains to which it has been applied, plausibility appears
to be determined by explanatory coherence alone.

Parallel constraint satisfaction models somewhat sim-
ilar to ECHO have been proposed for other phenomena:
analogical mapping (Holyoak & Thagard, in press), analog
retrieval (Thagard et al. 1989), discoursc processing
(Kintsch 1988), and word pronunciation retrieval (Leh-
nert 1987). {See also surveys by Feldman & Ballard 1982
and Rumelhart et al. 1986.) These systems differ from
Boltzmann machines and back-propagation networks
(Rumelhart et al. 1986) in that they do not adjust weights
while the network is running, only activations.

ECHO's connectionist character may prompt immediate
boos or cheers from different partisan quarters. Cur-
rently, debate rages in cognitive science concerning com-
peting methodologies. We can distinguish at least the
following approaches to understanding the nature of
mind and intelligence:

(1) Straight neuroscience, studying neurons or sec-
tions of the brain

{(2) Computational models of actual neurons in the
brain

(3) Connectionist models using distributed represen-
tations, so that a concept or hypothesis is a pattern of
activation over multiple units

{4) Connectionist models using localist representa-
tions, in which a single unit represents a concept or
propaosition

{5) Traditional artificial intelligence models using data
structures such as frames and production rules

{6) Psychological experiments

(7) Mathematical analysis

{8) Theoretical speculation
ECHO falls into (4), but I reject as methodological imperi-
alism the opinion that other approaches are not worth
pursuing as well. In the current neonatal state of cog-
nitive science, restrictions on ways to study the mind are
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Table 7. Input propositions for the Peyer example

Evidence
(proposition ‘El
(proposition ‘E2

body was found.”)
(proposition ‘E3
(proposition ‘E4
(proposition ‘E5
(proposition "E6
{proposition ‘E7
{proposition ‘E8
{proposition ‘E9

“Dotson said Olgivie is a liar.”)

“Knott's body and car were found on a frontage road near 1-15.7)
“22 young women reported being talked to at length by Pever after being stopped near where Knott's

“Calderwood said that he saw a patrol car pull over a Volkswagon like Knott's near 1-15.7)
“Calderwood came forward only at the trial.”}

“Calderwood changed his story several times.”)

“6 fibers found on Knott’s body mnatched Peyer’s uniform.”)

“Ogilvie said Peyer quizzed her about the case and acted strangely.”)

“Anderson and Schwartz saw scratches on Peyer's face the night of the killing.™)

{proposition ‘E10 “Martin said she saw Peyer pull Knott’s Volkswagon over.”)

{proposition ‘E11 “Martin came forward only just before the trial. "}

{(proposition ‘E12 “Anderson says she saw Peyer wipe off his nightstick in his trunk.”)

(proposition ‘E13 “Anderson did not say anything about the nightstick when she was first interrogated.”)
{proposition ‘E14 “Bloodstains found on Knott's clothes matched Peyer’s blood.™)

(proposition ‘E15 “12,800 other San Diegans had blood matching that on Knott’s clothes.”)

(proposition ‘E16 “A shabby hitchhiker was lunging at cars near the I-15 entrance.”)

{proposition ‘E17 “Peyer had a spotless record with the California Highway Patrol.”)

Hypotheses that Peyer is guilty

(proposition ‘G1  “Peyer killed Knott.”)

(proposition ‘G2  “Knott scratched Peyer's face.”)
(proposition ‘G3
(proposition ‘G4
{proposition ‘G5
(proposition ‘G6
(proposition ‘G7
(proposition ‘G8

“Peyer pulled Knott over.”)

“Peyer like to pull over young women.”)
“Peyer had a bloody nightstick.”)

Hypotheses that Peyer is innocent
(proposition ‘T1
(proposition ‘12
(proposition ‘I3
(proposition ‘T4 “Ogilvie lied.”)

{(proposition ‘[4A “Ogilvie is a liar.”)
(proposition ‘I5  “Peyer’ seratches came from a fence.”)
(proposition ‘16 “Martin lied.”)

“Calderwood made his story up.”)

“Someone other than Peyer killed Knott.”)

“Fibers from Peyers uniform were transferred to Knott.”)

“Calderwood was reluctaut to come forward because he wanted to protect his family from publicity.”)

“Anderson was having personal problems when first interrogated.”)

“The 6 fibers floated around in the police evidence room.”)

{proposition ‘I7  “Anderson was mistaken about the nightstick.”)

(proposition ‘I8 “Peyer is a good man.”)

Source: Analysis based on coverage by the San Diego Union and San Diego Tribune on February 28, 1988.

clearly premature. By pursuing all eight strategies, we
can hope to learn more about how to investigate the
nature of mind. As suggested by my juxtaposition of PI
and ECHO in section 7, I see no great incompatibility
between connectionist systems and traditional symbolic
AL Much is to be gained from developing hybrid systems
that exploit the strengths of both research programs
(Hendler 1987; Lehnert 1987).

Despite ECHO's parallelism, and use of a vague neural
metaphor of connections, 1 have not listed neural plau-
sibility as one of its advantages, because current knowl-
edge does not allow any sensible mapping from nodes of
ECHO representing propositions to anything in the brain.
For the same reason, I have not used the term “neural
net.” Parallelism has its advantages independent of the
brain analogy (Thagard 1986).

8.2. Probabllistic networks. The account of explanatory
coherence 1 have given bears some similarity to Pearl’s
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({1986; 1987) work on belief networks. Pearl also repre-
sents propositions as nodes linked by inferential depen-
dencies and uses a parallel algorithm to update numerical
values assigned to the nodes. The major difference be-
tween ECHO and Pearl’s networks, however, is that he
cunstrues numerical values as the probabilities of the
propositions, and weights between nodes as conditional
probabilities. Thus, in contrast to links established by
coherence relations, Pearl’s links are asymmetric, be-
cause in general the probability of P given Q is not equal
to the probability of ¢ given P.

Although Pearl’s probabilistic approach appears prom-
ising for domains such as medical diagnosis where we can
empirically obtain frequencies of cooccurrence af dis-
eases and symptoms and thus generate reasonable condi-
tional probabilities, it does not seem applicable to the
cases of explanatory coherence I have been considering.
What, for example, is the conditional probability of
burned objects gaining in weight given the hypothesis




Table 8. Explanations and contradictions
in the Peyer example

The case for Peyer's guilt
(explain (G1) "G2)
( . .

cxplain (G1) “G3)
{explain (G1) ‘GT)
{explain “({G1) ‘El)
(explain (G6) ‘E2}
(cxplain (G4) ‘E3}
{(explain (G5) ‘E4)
{(explain “(G3) 'E6)
(explain (G1) ‘ET)
(explain (G2} ‘E9)
{explain (G1) ‘E10)
{cxplain (GT) ‘E12)
ain (G8) ‘E13)

(explain

(explain (G1) ‘E14)

The case for Peyer’s innocence
(cxplain (I1) ‘E1)

(explain (12) ‘E4)
{explain (12} ‘E3)
(explain (I3) ‘E6)
(explain ‘(I14) ‘ET)
{(explain (I4A) ‘E8)
{explain (14A) '14)
(explain (I5) ‘E9)
(explain (I6) 'E10)
{(explain (I6) ‘E11)
{cxplain (I7) ‘E12)
(explain “(I7) ‘E13)
(cxplain (11 E13) ‘E14)
a

{explain (I1) ‘E16}
(explain (I8) ‘E17)

Contradictions
{contradict “‘G1 ‘I1)
{contradict ‘G5 ‘I2)
(contradict *G7 “IT}
{contradict ‘G1 "I8}
{contradict ‘G2 I5)
(contradict “G3 '13)
Data
{data(E1 E2E3E4 E5 E6 ETESEQE0ELL EI12E13 El4
E15 El6 E17))

that oxygen is combined with them? It would be 1 if the
hypothesis entailed the evidence, but it does so only with
the aid of the additional hypothesis that oxygen has
weight, and some unstated background assumption about
conservation of weight. To calculate the conditional prob-
ability, then, we need to be able to calculate the con-
junctive probability that oxygen has weight and that
oxygen combines with burning objects, but these propo-
sitions are dependent to an unknown degree. Moreover,
what is the probability that the evidence is correct? In
contrast to the difficulty of assigning probabilities to these
propositions, the coherence relations established by my
principles are easily seen directly in arguments used by
scientists in their published writings. When frequencies
are available because of empirical studies, probabilistic
belief networks can be much more finely tuned than my
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coherence networks, but they are ill-suited for the kinds
of nonstatistical theory evaluation that abounds in much
of science and everyday life.

One clear advantage to the probabilistic approach is
that the properties of probabilitics are naturally under-
stood using the axioms of probability and their natural
interpretation in terms of games of chance. Acceptability,
as indicated in ECHO by activation levels, has no such
precise interpretation. (See section 10.2 for further dis-
cussion of probability versus acceptability.)

8.3. Explanation-based learning. In machine learning, a
rapidly growing part of AL, the term “explanation-based”
is used to distinguish cases of knowledge-intensive learn-
ing from cases of simple learning from examples (see, for
example, DeJong & Mooney 1986). Rajamoney and De-
Jong (1988) discuss the problem of “multiple explana-
tions” and describe a program that does simulated experi-
ments to select an explanatory account. This program is
Popperian in spirit, in that the experiments concerning
electricity and heat flow serve to refute all but one of the
competing hypotheses. (Science is rarely so neat; see
sections 4.4 and 10.4.) Systems that deal with more
complex theories than those occurring in Rajamoney and
DeJong’s system will need a more comparative method of
choosing among multiple explanations such as that found
in ECHO.

Recently, there has been growing attention in Al to
“abduction,” construed as the construction and selection
of competing explanatory hypotheses. (Peirce applied
“abduction” only to hypothesis formation, but the term is
used in many quarters to apply to hypothesis evaluation
as well.) Abduction has been investigated in the domains
of medical diagnosis (Josephson et al. 1987; Pople 1977,
Reggia et al. 1983), natural language understanding
(Hobbs et al. 1988), and folk psychology (O'Rorke et al.
1988). My account shares with these models the aim of
finding the most comprehensive explanation, but it dif-
fers in both theory and implementation. The biggest
theoretical difference is that my principles of explanatory
coherence also favor hypotheses that are explained and
fare well on considerations of simplicity and analogy.
Leake (1988) describes a program for evaluating indi-
vidual explanations, a problem different from selecting a
hypothesis on the basis of how well it explains a wide
range of evidence.

9. Implicatlons for psychology

The theory of explanatory coherence described here is
intended to describe approximately the way people rea-
son concerning explanatory hypotheses (see section 10.5
for further discussion of the descriptive and normative
character of the theory). The psychological relevance of
explanatory coherence is evident in at least three impor-
tant areas of psychological research: attribution theory,
discourse processing, and conceptual change. After
sketching how explanatory coherence is germane to these
topics, I shall illustrate the testability of the EcHO model.

9.1. Attributlon. Because the inferences that people make
about themselves and others generally depend on causal
theories, social psychology is a very rich domain for a
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Figure 18. Network representing the Peyer trial. 1-17 are evidence units. G1-G8 represent hypotheses concerning Peyer’s guilt;
11-18 concern his innocence. Solid lines are excitatory links; dotted lines are inhibitory.

theory of explanatory coherence, and attribution theory
has been a major focus of research for several decades.
Research on attribution “deals with how the social per-
ceiver uses information in the social environment to yield
causal explanations for events” (Fiske & Taylor 1984, p.
21). Much of the theorizing about attribution can be
understood in terms of explanatory coherence. For exam-
ple, we can interpret the correspondent inference theory
of Jones and Davis (1965} as saying that we accept hypoth-
eses about the dispositional attributes of other people on
the basis of the hypotheses providing coherent explana-
tions of their behavior. Jones and Davis's discussion of the
analysis of noncommon effects can be understood as
saying that we infer that someone has one of a set of
intentions because that intention explains some aspects of
their behavior that the other intentions do not. Our
inferences about other people’s dispositions will also
depend on the available alternative explanations of their
behavior, such as coercion, social desirability, social role,
and prior expectations. Explanatory coherence theory
does not address the question of how people forn these
kinds of hypotheses, but it does show how people can
select from among the hypotheses they have forined. I
conjecture that if cases of attributional inferences were
analyzed in sufficient detail to bring out the relevant data
and hypotheses, preferences for situational or disposi-
tional explanations would follow from the nature of the
explanatory networks.

As we saw in the preppy murder trial, jurors often have
to infer the intentions of witnesses and of the accused.
Pennington and Hastie (1986; 1987} have interpreted the
results of their experiments on juror decision making by
hypothesizing that jurors make judgments based on con-
siderations of explanatory coherence; their cases look ripe
for ECHO analysis. Of course, ECHO does not model all the
kinds of reasoning involved in these experiments. Iu
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particular, it does not model how the jurors process the
statements about evidence and combine them into ex-
planatory stories. But it does give an account of how
jurors choose between stories on the basis of their explan-
atory coherence.

9.2. Discourse processing. The problem of recognizing
intention in utterances can be understood in terms of
explanatory coherence.? Clark and Lucy (1975) advocated
a stage model of comprehension, according to which a
literal meaning for an utterance is calculated before any
nonliteral meanings are considered. In contrast, Gibbs
(1984) and others have argued that hearers are able to
understand that “Can you pass the salt?” is a request,
without first interpreting it as a question. lu explanatory
coherence terms, we can think of competing hypotheses
— that the utterance is a request and that it is a question —
as simultaneously being evaluated with respect to what
they explain and how they themselves are explained. To
take an extreme example, the utterance might even be
construed as an insult if it was expressed in a nasty tone of
voice and if we had reason to believe that the utterer
wanted to be insulting. Parallel evaluation of the different
explanations of the utterance results in an appropriate
interpretation of it.

Trabasso et al. (1984) have argued that causal co-
hesiveness is very important for story comprelension.
They analyze stories in terms of networks of causally
related propositions that are similar to ECHO's explanato-
ry networks except that there are uo links indicating
contradictions. Comprehension differs from theory eval-
uation in lacking easily identified alternatives competing
for acceptance. Still, it is possible that soine mechanism
similar to ECHO's way of activating a subset of mutually
coherent propositions may be involved in reaching a
satisfactory understanding of a story. Text comprehen-
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Figure19. Connectivity ofthe unit G1, representing Peyer's guilt. The numbers under the units are their activation values after the
unit has settled. Thick lines indicate excitatory links; thin lines indicate inhibitory links. Numbers on the lines indicate the weights on

the links.

sion obviously involves many processes besides in-
ferences about causal or explanatory coherence, but
ECHO-like operation may nevertheless contribute to the
necessary task of appreciating the causal cohesiveness of a
story.

9.3. Bellef revision and conceptual change. Ranney and
Thagard (1988) describe the use of ECHO to model the
inferences made by naive subjects learning elementary
physics by using feedback provided on a computer dis-
play (Ranney 1987). Subjects were asked to predict the
motion of several projectiles and then to explain these
predictions. Analyses of verbal protocol data indicate that
subjects sometimes underwent dramatic belief revisions
while offering predictions or receiving empirical feed-
back. ECHO was applied to two particularly interesting
cases of belief revision with propositions and explanatory
relations based on the verbal protocols. The simulations
captured well the dynamics of belief change as new

evidence was added to shift the explanatory coherence of
the set of propositions.

The theory of explanatory coherence sketched here has
the capacity to explain major conceptual changes such as
those that have been hypothesized to occur in scientific
revolutions (Kuhn 1970; Thagard, in press b) and in
children (Carey 1985). Because ECHO evaluates a whole
network of hypotheses simultaneously, it is capable,
when new data are added, of shifting from a state in which
one set of hypotheses is accepted to a state in which an
opposing set is accepted. This shift is analogous to the
Gestalt switch described in section 3, except that scien-
tists rarely shift back to a rejected view. Developmental
psychologists have speculated about the existence of
some kind of “transition mechanism” that could shift a
child forward from a primitive conceptual scheme to an
advanced one. We currently have insufficient experimen-
tal data and theoretical understanding to know whether
knowledge development in children has the somewhat
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Figure20. Activation history of the Peyer network. Each graph shows theactivation of 2 unit over 54 cycles of updating, on a scale of
—1 to 1, with the horizontal line indicating the initial activation of 0.

precipitous nature attributed to scientific revolutions.
But if children do undergo dramatic changes in concep-
tual systems because they have acquired a more coherent
way of understanding their worlds, then ECHO may be
very useful for modeling the transition.

9.4. Testabiiity. So far, my discussion of the psycholagical
relevance of ECHO has been merely suggestive, showing
that explanatory coherence judgments may be plausibly
considered to contribute to important kinds of inferential
behavior. A defense of ECHO as a psychological model,
however, will require controlled experiments that pro-
vide a much finer-grained evaluation of the theory of
explanatory coherence. Fortunately, there appears to be
great potential for testing explanatory coherence theory
and the EcHO model by comparing the performance of
human subjects with ECHO-based predictions about
qualitative and quantitative features of the acceptance
and rejection of hypotheses. Michael Ranney and I are
planning several studies in which subjects will he given
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textual descriptions of scientific and legal debates. We
want to determine whether, when ECHO is run with
inputs derived from subjects’ own analyses of debates,
the analyses predict their conclusions. We also want to
determine whether manipulating textual descriptions of
evidence, explanations, and contradictory hypotheses
will affect the confidence that subjects have in different
hypotheses in a way that resembles how manipulations
affect ECHO's activation levels. It will also be interesting
to find out whether important transitional points in the
amount of evidence and explanation that tend to tip
ECHO’s activations over to new sets of accepted beliefs
correspond to major shifts in subjects’ beliefs at the same
points. Such transitions, in both subjects and ECHO, are
described in Ranney and Thagard (1988).

The methodology here is to use ECHO to test the
psychological validity of the theory of explanatory co-
herence embodied in the seven principles in section 2.2.
These principles in themselves are too general to have
direct experimental consequences, but their implemen-




tation in ECHO makes possible very detailed predictions
about the conclusions people will reach and the relative
degree of confidence they will have in those conclusions.
Merely proposing experiments does not, of course, show
the psychological validity of the theory or the model, but
it does show their joint testability. The theory of explana-
tory coherence presented in this paper has been well
explored computationally, but I hope the above section
shows that it is also suggestive psychologically.

10. Implications for philosophy

In philosophy, a theory of explanatory coherence is po-
tentially relevant to metaphysics, epistemology, and the
philosophy of science. In metaphysics, a coherence theo-
ry of truth, according to which a proposition is said to be
true if it is part of a fully coherent set, has been advo-
cated by idealist philosophers such as Bradley and Re-
scher (Bradley 1914; Rescher 1973; see also Cohen, L. J.
1978). In epistemology, the view that justified reasoning
involves the best total explanatory account has been
urged by Harman (1973; 1986) and contested by Gold-
man (1986) and Lehrer (1974). The theory of explanatory
coherence in this paper is not aimed primarily at ques-
tions of truth or justification, but rather at the philoso-
phy of science and of law, illuminating the kinds of
reasoning used to justify the acceptance and rejection of
scientific and legal hypotheses. The account of explana-
tory coherence offered here is as compatible with a
correspondence theory of truth — according to which the
truth of a proposition depends on its relation to an
independent reality — as it is with a theory that attemnpts
to define truth in terms of coherence.

10.1. Hollsm. A major concern in epistemology and phi-
losophy of science concerns whether inference is holistic.
According to Quine (1961, p. 41), “our statements about
the external world face the tribunal of sense experience
not individually but only as a corporate body.” In a similar
vein, Harman (1973, p. 159) writes that “inductive in-
ference must be assessed with respect to everything one
believes.” Behind these holistic views is the antifounda-
tionalist assumption that it is impossible to provide iso-
lated justifications for isolated parts of our system of
beliefs. Quine’s position is based on his rejection of the
analytic-synthetic distinction and on the view of Duhem
(1954) that deducing an observation statement from a
hypothesis always involves a complex of other hypoth-
eses, so that no hypothesis can be evaluated in isolation.
Because predictions are usually obtained from sets of
hypotheses, observations that contradict the predictions
do not provide grounds for rejecting any particular hy-
pothesis, only for concluding that there is at least one false
hypothesis. Harman argues that reasoning is inference to
the best explanation, which includes both inference to
hypotheses that explain the evidence and inference to
what is explained. Inferential holism is therefore sug-
gested by the following considerations:

(1) Hypotheses cannot be refuted and confirmed in
isolation.

(2) Hypothesis evaluation must take into account the
total sum of relevant evidence.

{3) The acceptability of a proposition is a function not
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only of what it explains but also of its being explained.

Unfortunately, holism brings many problems with it,
Hegel (1967, p. 81) said that “the true is the whole,” but
he insisted that it should not be taken to be a crude,
undifferentiated whole. If sets of hypotheses must be
evaluated together, and everything is potentially relevant
to everything else, how can we make a reasonable judg-
ment about which hypotheses to maintain and which to
reject? Kuhn’s (1970) influential account of theory change
as shifts in whole paradigms has been taken by some to
imply that there is no rationality in science. Fodor {1983)
has concluded from Quinean holism not only that philoso-
phers have failed to provide a reasonable account of
scientific confirmation, but even that cognitive science is
unlikely ever to provide an account of such central psy-
chological processes as hypothesis selection and problem
solving (see Holland et al. 1986, Chap. 11, for a rebuttal).

My theory of explanatory coherence and its implemen-
tation in ECHO are holistic in that the acceptability of a
hypothesis potentially depends on its relation to a whole
complex of hypotheses and data. But there is nothing
mystical about how ECHO uses pairwise relations of local
coherence to come up with global coherence judgments.
Although evidence units can be deactivated, just as data
are sometimes ignored in scientific practice, the evidence
principle gives some priority to the results of observation.

Although EcHO does not exhibit simplistic Popperian
falsification, it need not succumb to the various strategies
that can be used to save a hypothesis from refutation. The
strongest direct evidence against a hypothesis is pointing
out that it has implications that contradict what has been
observed. One way of saving the hypothesis from an
objection of this sort is to use an auxiliary hypothesis to
explain away the negative evidence. Section 4.6 showed
how simplicity considerations can prevent this strategem
from working. Another way of saving a hypothesis in the
face of negative evidence is to modify its cohypotheses. As
Duhem and Quine pointed out, if H1 and H2 together
imply some NE1 that contradicts a datum E1, then logic
alone does not tell whether to reject H1, H2, or both. In
ECHO, which hypotheses are deactivated depends on
other relations of explanatory coherence. If H1 contrib-
utes to fewer explanations than H2, or if H1 contradicts
another highly explanatory hypothesis, H3, then H1 will
be more likely to be deactivated than H2.

Although ECHO makes it possible for a set of hypotheses
to be accepted or rejected as a whole, it also admits the
possibility of more piecemeal revision. Perrin (1988, p.
115} reports that the conversion of phlogiston theorists to
the oxygen theory sometimes took several years, with the
converts gradually accepting more and more of La-
voisier’s views. ECHO's networks such as the OXygen-
phlogiston one shown in Figure 9 do not connect every-
thing to everything else. Explanatory relations may pro-
duce relatively isolated packets of coherent hypotheses
and evidence; these may sometimes be accepted or re-
jected independent of the larger theory.

10.2. Probability. My account of theory evaluation con-
trasts sharply with probabilistic accounts of confirmation
that have been influential in philosophy since Carnap
(1950). Salmon (1966), for example, advocates the use of
Bayes’s theorem for theory evaluation, which, if P(H,E)
stands for the probability of H given E, can be written as:
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P(H.E) = fﬂ%ﬂ . ()

Consider what would be involved in trying to apply this to
Lavoisier’s argument against the phlogiston theory. We
would have to take each hypothesis separately and calcu-
late its probability given the evidence, but it is totally
obscure how this could be done. Subjective probabilities
understood as degrees of belief make sense in contexts
where we can imagine people betting on expected out-
comes, but scientific theory evaluation is not such a
context. How could we take into account that alternative
explanations are also being offered by the phlogiston
theory? The issue is simplified somewhat if we consider
only likelihood ratios for the oxygen and phlogiston theo-
ries — that is, the ratio of P(E, oxygen) to P(E, phlogiston)
— but we still have the problem of dealing with the
probability of the conjunction of a number of oxygen
hypotheses whose degree of dependence is indetermi-
nate. As 1 argued in section 8.2, probabilities have mar-
ginal relevance to qualitative explanatory inferences in
science and law.

My account of coherence based on explanation con-
trasts markedly with probabilistic accounts. A set of
propositions, S, is probabilistically coherent if there is a
real-valued function that gives an assignment of values to
the propositions consistent with the axioms of probability
(Levi 1980). This constraint is very different from the ones
governing explanatory coherence that ECHO shows to be
sufficient for accepting and rejecting hypotheses. The
real numbers that are degrees of activation of propositions
in ECHO are clearly not probabilities, because they range
from 1 to —1, like the certainty factors in the Al expert
system MYCIN (Buchanan & Shortliffe 1984). Note that
two contradictory propositions can both have activation
greater than 0, if neither is substantially more coherent
with the evidence than the other.

Probabilities, ranging from 0to 1, are often interpreted
as degrees of belief, but this interpretation obscures the
natural distinction between acceptance and rejection,
belief and disbelief. 1 do not just have low confidence in
the proposition that the configuration of the stars and
planets at birth affects human personality; 1 reject it as
false. One advantage of probability theory, however, is
that it provides rules for calculating the probabilities of
conjunctions and disjunctions. In contrast, the accept-
ability (in my sense) of “P and Q" and “P or Q" is not
defined, because such composite propositions do not, in
general, figure in explanations. One can concoct cases of
disjunctive explanations (“He said he was flying in from
either New York or Philadelphia, and the weatheris very
bad in both places, so that explains why he’s delayed”),
but 1 have never encountered one in a scientific or legal
context. Explanations depending on conjunctions of co-
hypotheses are common, but ECHO has no need to calcu-
late the acceptability of “P and Q,” because relations of
explanatory coherence tell you all you need to know about
P and Q individually. The apparent advantage of proba-
bility theory is much weakened in practice by the fact that
the calculation of conjunctive and disjunctive proba-
bilities requires knowledge of the extent to which the two
propositions are independent of each other. Such infor-
mation is easily gained when one is dealing with games of
chance and in other cases where frequencies are avail-
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able, but it is hard to come by in cases of scientific and
legal reasoning: For Lavoisier, what was the conditional
probability of OH1 (pure air contains oxygen principle)
given OH2 (pure air contains matter of fire and heat)?

10.3. Confirmation theory. My view of theory evaluation
based on explanatory coherence can also be contrasted
with confirmation theory, according to which a hypoth-
esis is confirmed by observed instances (Glymour 1980,
Hempel 1965). The cases 1 discussed in detail in this
paper are typical, 1would argue, of the general practice in
scientific argumentation that theories are not justified on
the basis of particular observations that can be derived
from them. Rather, observations are collected together
into generalizations. These generalizations are some-
times rough, describing mere tendencies, In this process,
particular observations can be tossed out as faulty or
irrelevant. Theory evaluation starts with the explanation
of the generalizations, not with particular observations.
Lavoisier, for example, did not defend his theory by
pointing to particular confirming observations such as his
measurements indicating that a sample of burned phos-
phorus gained weight on a particular day in 1772. Rather,
his central claim in defense of his theory is that it explains
why objects in general gain weight when burned.
Qualitative confirmation theory also does not in itself
suggest how simplicity, analogy, competition, and being
explained can play a role in theory evaluation.

10.4. Expianationism and conservatism. Now let me turn
to a brief discussion of philosophical views that are much
closer to my account of explanatory coherence. My dis-
cussion of hypotheses is compatible with the “explana-
tionism” of Harman (1986) and Lycan (1988). Unlike
them, however, I am not trying to give a general account
of epistemic justification: I hold that there are other
legitimate forms of inference besides inference to the best
explanation. The principle of data priority assumes that
results of observation start with a degree of acceptability
that derives from their having been achieved by methods
that lead reliably to true beliefs. This justification is closer
to the “reliabilism’” of Goldman {1986), a position which
has problems, however, in justifying the acceptance of
hypotheses (Thagard, in press a). My own view of justifi-
cation is that explanation and truth are both epistemic
goals that need to be taken into account as part of a larger
process of justifying inferential strategies (Thagard 1988a,
Chap. 7).

The other major difference I have with Harman and
Lycan is that they both advocate conservatism as a sup-
plement to considerations of explanatory coherence. Har-
man says we should try to maximize explanatory co-
herence while minimizing change. 1 view conservatism as
a consequence of explanatory coherence, not as a separate
factor in brief revision. 1n ECHO, we get a kind of conser-
vatism about new evidence, as 1 showed in section 4.2.
For ECHO, new evidence that does not cohere with what
has been accepted is not treated equally with old evi-
dence. 1n addition to conservatism about new evidence,
there is a kind of conceptual conservatism inherent in any
cognitive system: 1f an alternative theory requires a
network of concepts which differs from my own, then 1
cannot evaluate the new system until 1 have effortfully
acquired that system of concepts (Thagard, in press b).




Hence, an existing set of views will be conservatively
favored until the alternative is fully developed.

The conservatism favored by Harman and Lycan seems
most plausible, not for actual scientific cases, but for
imagined ones in which a trivial variant of an accepted
theory appears as an alternative. Suppose H1 gets high
activation as the best explanation of E1 and E2, and then
H2 is proposed to explain them both. If H1 and H2 are
contradictory, then ECHO readjusts activation so that H1
and H2 are virtually at the same level. What if H2 isjusta
trivial variant of H1? Then H2 does not really contradict
HI, so they can both be highly active without any prob-
lem. One might worry that the system will quickly be
cluttered with trivial variants, but in a full computational
system, that would be taken care of by having pragmatic
constraints on what hypotheses are generated (Holland et
al. 1986).

As a final comparison, consider the complementary
views on explanatory unification of Kitcher {(1981). He
describes how powerful theories such as Darwin’s and
Newton’s provide unification by applying similar patterns
of explanation to various phenomena. That this should
contribute to explanatory coherence is a consequence of
my theory, for if H1, H2, and H3 are all used to explain
the evidence, we get the result not just that each coheres
with the evidence, but also that they cohere with each
other. Moreover, degrees of coherence are cumulative,
so that the more two hypotheses participate in explaining
different pieces of evidence, the more they cohere with
each other. (See the simple example in section 4.5.)

The major philosophical weakness of my account of
explanatory coherence concerns the nature of explana-
tion. This paper has bypassed the crucial question of what
explanation is. Fortunately, to apply the principles of
explanatory coherence and to generate input for ECHO, it
is not necessary to have an exact analysis of the nature of
explanation. We can take for granted the explanatory
relations described by scientists such as Lavoisier and
Darwin, or we can get an approximation using a computa-
tional system such as PI, as described in section 7. For an
outline of what a computational account of explanation
might look like, see Thagard (1988a, Chap. 3).

10.5. The descriptive and the normative. Philosophy dif-
fers from psychology primarily in its concern with nor-
mative matters — how people ought to reason rather than
how they do reason. For some philosophers, any analysis
that smacks of psychology has disqualified itself as epis-
temology. From this perspective, one faces the dichoto-
my: Is my theory of explanatory coherence normative or
is it merely descriptive? In accord with Goldman (1986)
and Harman (1986), I reject this rigid dichotomy, main-
taining that descriptive matters are highly relevant to
normative issues (see Thagard 1988a, Chap. 7). The seven
principles of explanatory coherence are intended to cap-
ture both what people generally do and what they ought
to do. By no means do they constitute a full theory of
rationality. There are undoubtedly cases where people
deviate from explanatory coherence — for example, pre-
ferring a hypothesis because it makes them happy rather
than because of the evidence for it (Kunda 1987). Racial or
other types of prejudice may prevent jurors from taking a
piece of evidence seriously. Various other biases (Nisbett
& Ross 1980) may intrude to throw off considerations of
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explanatory coherence. Much psychological experimen-
tation and modeling is needed to show when people’s
reasoning can be accounted for in terms of explanatory
coherence and when it is affected by other factors. This
work can go hand in hand with refinements in the nor-
mative aspects of the theory.

11. Conclusion

I conclude with a brief survey of the chief accomplish-
ments of the theory of explanatory coherence offered
here.

First, it fits directly with the actual arguments of
scientists such as Lavoisier and Darwin who explicitly
discuss what competing theories explain. There is no
need to postulate probabilities or contrive deductive
relations. The theory and EcHO have engendered a far
more detailed analysis of these arguments than is typ-
ically given by proponents of other accounts. Using the
same principles, it applies to important cases of legal
reasoning as well.

Second, unlike most accounts of theory evaluation, this
view based on explanatory coherence is inherently com-
parative. If two hypotheses contradict each other, they
incohere, so the subsystems of propositions to which they
belong will compete with each other. As ECHO shows,
successful subsystems of hypotheses and evidence can
emerge gracefully from local judgments of explanatory
coherence.

Third, the theory of explanatory coherence permits a
smooth integration of diverse criteria such as explanatory
breadth, simplicity, and analogy. ECHO’s connectionist
algorithm shows the computability of coherence rela-
tions. The success of the program is best attributed to the
usefulness of connectionist architectures for achieving
parallel constraint satisfaction, and to the fact that the
problem inherent in inference to the best explanation is
the need to satisfy multiple constraints simultaneously.
Not all computational problems are best approached this
way, but parallel constraint satisfaction has proven to be
very powerful for other problems as well - for example,
analogical mapping (Holyoak & Thagard, in press).

Finally, my theory surmounts the problem of holism.
The principles of explanatory coherence establish pair-
wise relations of coherence between propositions in an
explanatory system. Thanks to EcHO, we know that there
is an efficient algorithm for adjusting a system of proposi-
tions to turn coherence relations into judgments of ac-
ceptability. The algorithm allows every proposition to
influence every other one, because there is typically a
path of links between any two units, but the influences
are set up systematically to reflect explanatory relations.
Theory assessment is done as a whole, but a theory does
not have to be rejected or accepted as a whole. Those
hypotheses that participate in many explanations will be
much more coherent with the evidence, and with each
other, and will therefore be harder to reject. More
peripheral hypotheses may be deactivated even if the rest
of the theory they are linked to wins. We thus get a
holistic account of inference that can nevertheless differ-
entiate between strong and weak hypotheses. Although
our hypotheses face evidence only as a corporate body,
evidence and relations of explanatory coherence suffice to
separate good hypotheses from bad.
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Table 9. Algorithms for processing input to ECHO

Table 10. Algorithms for network operation

1. Input: (PROPOSITION NAME SENTENCE)

Create a unit called NAME and an index for it.

Store SENTENCE with NAME.

2. Input: (EXPLAIN LIST-OF-PROPOSITIONS
PROPOSITION)

Make excitatory links® between each member of LIST-
OF-PROPOSITIONS and PROPOSITIONS.

Make excitatory links? between each pair of LIST-OF-
PROPOSITIONS.

Record what explains what.

3. Input: (CONTRADICT PROPOSITON-1
PROPOSITION-2)

Make an inhibitory link between PROPOSITION-1 and
PROPOSITION-2.

4. Input: (DATA LIST-OF-PROPOSITIONS)

For each member of LIST-OF-PROPOSITIONS, create
an excitatory link from the special evidence unit with
the weight equal to the data excitation parameter,
unless the member is itself a list of the form
(PROPOSITION WEIGHT). In this case, the weight of
the excitatory link between the special unit and
PROPOSITION is WEIGHT.

If there are unexplained data propositions, increase the
decay rate parameter by multiplying it by the ratio of
the total number of evidence proppositions to the
number of explained evidence propositions.

aThe weights on these links are determined by equation 3
given in the text. Weights are additive: If more than one
EXPLAIN statement creates a link between two proposition
units, then the weight on the link is the sum of the weights
suggested by both statements.

12. APPENDIX

Technlcal detalls of ecHo

For those interested in a more technical description of how
£cHO works, this appendix outlines its principle algorithms and
describes sensitivity analyses that have been done to determine
the effects of the various parameters on ECHO's performance.

12.1. Algorithme. As I described in section 4.1, ECHO takes as input
PROPOSITION, EXPLAIN, CONTRADICT, and DATA
statements. The basic data structures in ECHO are LISP atoms
that implement units with property lists that contain informa-
tion about connections and the weights of the links between
units. Table 9 describes the effects of the four main kinds of
input statements. All are very straightforward, although the

1. Running the network:

Set all unit activations to an initial starting value (typically
.01), except that the special evidence unitis clamped at 1.

Update activations in accordance with (2) below.

If no unit has changed activation more than a specified
amount (usually .001), or if a specified number of
cycles of updating have occurred, then stop.

Print out the activation values of all units.

2. Synchronous activation updating at each cycle:

For each unit u, calculate the new activation u in accord
with equations 3 and 4 in the text, considering the old
activation of cach unit »’ linked to u.

Set the activation of u to the new activation.

EXPLAIN statements require a calculation of the weights on the
excitatory links, The equation for this is:

weight(P,Q) = default weight { (number of cohypotheses
Of P)(simpl:‘c:'ty impact) (3)

Here simplicity impact is an exponent, so that increasing it
lowers the weight even more, putting a still greater penalty on
the use of multiple assumptions in an explanation. In practice,
however, I have not found any examples where it was interest-
ing to set simplicity impact at a value other than 1.

After input has been used to set up the network, the network
is run in cycles that synchronously update all the units. The
basic algorithm for this is shown in Table 10. For each unit j, the
activation a,, ranging from —1 to 1, is a continuous function of
the activation of all the units linked to it, with each unit’s
contribution depending on the weight w,; of the link from unit i
to unit j. The activation of a unit j is updated using the following
equation:

net.(max—aj(t)) if net; > 0 4)

aft + 1) = aftf1-8) +{netj(aj(t)—min) otherwise

Here 8 is a decay parameter that decrements each unit at every
cycle, min is minimum activation {—1), max is maximum ac-
tivation (1), and net; is the net input to a unit. This is de-

fined by
tw aft) (5)

netj = 2, 5%
Repeated updating cycles result in some units becoming acti-
vated (getting activation > 0) while others become deactivated
(activation < Q).

12.2. Sensitivity analyses. Multiple connected localist networks
sometimes exhibit instability, failing to settle into stable activa-
tion patterns because complexes of mutually excitatory units
produce activation oscillations. As Figures 11, 14, 17, and 20
suggest, ECHO's networks are generally stable, usually requiring

Table 11. Network information for four major examples

Cycles Excitation Inhibition
Units Links to settle ceiling floor
Lavoisier 20 49 107 13 -.18
Darwin 29 70 49 .06 -.16
Chambers 34 59 63 A7 -.07
Peyer 34 54 78 08 -.13
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fewer than 100 units of updating for all units to reach asymptotic
levels. Pearl (1987) devotes considerahle effort to rearranging
probabilistic networks so that they will be singly connected and
hence stable. Fortunately, the networks set up by Ecio in
accord with the theory of explanatory coherence do not require
any alteration to scttle into stable activations. Whereas a proba-
bilistic network may nced links specifying the conditional prob-
abilitics of p given g, g given r, r given s, and s given p, such
eyclic paths rarely arisc in ECHO because the “explain” relation
sets up hierarchics of units rather than cycles. Ecito undergoes
activation oscillations only when the excitation parameter is
high relative to inhibition, for example, in the Chammbers case, if
cxcitation has a value of .17 instead of .05, ECHO is efficient: In
each of the four major cxamples, a complete run, including
network creation and settling, takes less than a minute of cpu
time on a Sun 3/75 workstation. Because networks with hun-
dreds more uvits and thousands more links than Eco’s net-
works have run successfully in ACME, a similar program that
does analogical mapping (Holyoak & Thagard, in press), Isec no
problem in scaling ECHO up to run on much larger examples.

Table 11 shows, for each major example, the size of the
networks created and the number of cycles of activation updat-
ing it takes for them to settle using the defauit parameter values
of .05 for excitation, —. 2 for inhibition, .1 for data excitation, and
.05 for decay. Experiments have shown that Ecro exhibits the
behavior described in the text over a wide range of values for
these parameters. For example, in the Lavoisier example, no
important differences in the resuits oceur if the decay, excita-
tion, inhibition, and data excitation parameters are all halved or
doubled. In general, lowering positive parameters and making
inhibition closer to 0 tends to prolong settling time. Increasing
decay tends to flatten the activation curves, both positive and
negative, kecping them closer to 0. Increasing data excitation
leads evidence units to have higher asymptotic activation. Vary-
ing excitation and inhibition systematically reveais that there is a
critical value for each. If excitation is high relative to inhihition,
then the system shows much “tolerance” and does not deacti-
vate inferior hypotheses. Table 11 lists excitation ceilings and
inhibition floors for the four major examples. The excitation
ceilings are the maximum values that excitation can have with-
out activating units representing inferior hypotheses; inhibition
here is constant at the default value of —. 2. The excitation values
at which networks become unstable are well above these ceil-
ings. The inhibition floors are the minimum values that inhil-
tion must have without failing to deactivate units representing
inferior hypotheses; excitation here is constant at the default
value of .05. The excitation ceiling and the inhibition floor
indicate the most important respects in which quantitative
parameter changes in Ecno have qualitative effects. Keep in
mind that the excitation eccilings and inhibition floors listed in
Table 11 are based on a fixed value for, respectively, inhibition
and excitation. Varying these values will produce different floors
and ceilings, so that the range of possible parameter values is
much larger than Tahle 11 portrays.
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NOTES

1. From here on, I shall e less careful about distinguishing
between units and the propositions they represent,

2. T owe this suggestion to Daniel Kimberg.
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Explanation and acceptability

Peter Achinstein
Depanment of Philosophy, Johns Hopkins University, Baltimore, MD 21218

Thagard proposes a theory of explanatory cohcrence that is
based on what he admits to be a primitive, undefined concept of
explanation. It is an essential part of this theory that explanatory
echerence is intimately tied to acceptability. (“We should ac-
cept propositions that are [explanatorily] coherent with our
otherbeliefs,”) My challenge is this: Can such a theory work and
be illuminating if explanation remains undefined?

Let us consider two ways one might construe Thagard's
explanation sentences of the form “P explains Q.” First, they
might be construed simply as proposed explanations. For exam-
ple, we say that the Book of Genesis explains the origin of the
universc. In saying this, we do not necessarily imply that the
explanation is good, or correct, or that it even meets minimal
standards that we have for explanations. We may simply mean
that it has heen proposed by those who believe these things.
(For a definition of this nonevaluative sense of “explain,” see
Achinstein 1983, Chapters 2 and 3.) T doubt that Thagard has
this sense of explanation in mind, because it bears no obvious
connection to acceptability.

Second, let us shift to an evaluative sense of explanation.
Which one? This question needs to be raised because of a
standard objection to explanatory accounts of acceptability.
Suppose that we have a set of observed data and a hypothesis h
that explains all of them. The objection to concluding that h is
acceptable on such grounds is that some incompatible hypoth-
esis h’, which also explains the observed data, will usually he
constructible. If so, then, unless h has some independent
support, h is not acceptable, or at least no more so than h'.

One standard form of cxplanation found particularly in the
quantitative seicnces involves deductive derivation. Suppose
that data O, O,, . . . are deductively derivable from hypoth-
esis h together with background information b. The following
probability theorem is provable: If h has at least one incompati-
ble competitor h’ that together with b also entails 0,0, ...,
and is such that p(h'/b) = p(h/b), then for any n, no matter how
large, pth/O|, . . . O_ & b) = 5. That is, if h has a competitor
that entails the same data as h, and whose probability on the
background information alone is at least as high as that of h, then
the prohability of h will not rise ahove §, no matter how many
data h entails. This holds even if scientists are unaware of the
competitor h’. If the acceptability of a hypothesis requires a
probability greater than 4, then, in such circumstances, h is not
acceptable despite its suecess in entailing all the data and

BEHAVIORAL AND BRAIN SCIENCES (1989) 12:3 467




Commentary/Thagard: Explanatory coherence

despite the fact that proponents of h are unable to think of any
competitor to h that entails all the data. Nor is } sacred here. We
can show, for example, that if there is such a competitor to h
whaose probability on b is at least .8, then h’s probability cannot
rise above .2.

Indeed, if h entails each of the Os, then it doesn’t necessarily
follow even that h's probability increases. If each of the Os is
“old” evidence, known with certainty to be true, then h’s
probability remains constant. It increases if and only if the Os
are new phenomena whose probability is less than 1. The rub is
that although h’s probability rises as it entails more and more
new phenomena, it may forever remain extremely low, much
lower than that of a competitor, and fail to approach anything in
the acceptable range.

Thagard is dubious about assigning probabilities to scientific
hypotheses, and in any case, he claims, rejection is different
from low probability. I don’t find these objections decisive. The
competitive hypothesis theorem does not require that we be
able to assign a precise prohability to h or its competitor h'. It
assumes only that h’s probability on the background informa-
tion, whatever it is, is no greater than that of h'. In that case,
whatever h's probability on the data is, it cannot get very high.
Furthermore, although low probability is not necessarily the
same as rejection, it is possible to give rules of acceptance and
rejection that are based on probabilities (see Levi 1967).
Thagard needs to demonstrate that there is some connection
between his notion of explanation and acceptability. But with-
out some account of explanation {and of acceptability), I don't
see that any connection is guaranteed. Thagard cannot simply
assume—as he does in his Principle 6-that there is some reason-
able concept of explanation that insures acceptability.

As far as explanation by deduction is concerned, Thagard
makes it clear that, for other reasons, he “assume(s) that expla-
nation is more restrictive than implication.” But (assuming he
does not deny that many explanations do involve deductive
derivations), what additional conditions is he willing to impose?
This question is crucial because not all plausible conditions will
thwart the previous probability theorem. An important
nineteenth-century proponent of an explanatory view of accept-
ability was William Whewell. He regarded the wave theory of
light as acceptable not simply because it afforded derivational
explanations of various observed optical phenomena, but be-
cause (a) the phenomena derived were not all of the same type
{what he called “consilience™), and (b) the hypotheses of the
theory that provided the explanation “run together” (as he put
it) in a way that goes beyond simply explaining the data. Yet itis
possible to show that such additional conditions—though consid-
erably stronger than those imposed by the standard deductive
model of explanation—are not sufficient to dodge the effects of
the “competitor” probability theorem. (For details, see Achin-
stein, forthcoming.)

Finally, there are, to be sure, evaluative conditions on expla-
nations that will insure the acceptability of the explanatory
hypothesis—for example, require that the explanatory hypoth-
esis be true, or that it be highly probable given all the observed
data {as does Hempel's, 1965, standard deductive model of
explanation). The problem is that if these are the requirements
added to derivability (or whatever else explanations are sup-
posed to exhibit), then explanation becomes redundant. If what
we care about is h's acceptability, then h’s truth or high proba-
bility will insure that. Why bring in explanation?
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Thagard presents a psychologically interesting theory imple-
mented in a computer model so straightforward that other
investigators can readily test its applications and limitations and
even fiddle with its procedures. Our comments are stimulated
by initial attempts to use ECHO to analyze arguments and as an
educational device for application with children.

Explanatory coherence shows us how strong theories win out
over weak ones, even though they are more vulnerable to
troublesome facts. If we examine instances where weak theories
survive against stronger ones, however, we see a kind of argu-
ment that is not represented in Thagard’s theory, although it
seems to play a predominant role in everyday thinking. Thagard
presents a model of argument to the best explanation. The issue
from this standpoint is, Does the hypothesis explain the facts?
Bartlett (1958) concluded from his studies of everyday thinking
that people are not much concerned with accounting for facts.
Instead, they settle quickly on a belief and retain it as long as
facts more or less support it. For them the issue is, Do the facts
support the hypothesis?

This latter kind of thinking has becn prominent in the last two
decades of debate about the heritability of intelligence. In this
debate, a relatively weak theory, environmentalism, has fared
very well both in scientific circles and in popular opinion against
a stronger heredity-plus-environment theory that purports to
explain the environmentalist facts plus a number of others—such
as the magnitudes of various kinship correlations, regressions to
the mean, and within-family variability of IQ. (See Urbach,
1974,) for an analysis of this controversy from a Lakatosian
perspective.) The main thrust of environmentalist arguments
has not been defending the explanatory power of environmen-
talist hypotheses but attacking the quality of evidence brought
forth by hereditarians (Kamin 1974). It may be noted that
present-day creationists are gathering a following by using the
same kind of argument. Within cognitive science, a somewhat
similar argument develops when people criticize the validity of
thinking-aloud protocol data. And, of course, attacking the
evidence is a major form of argument in court trials.

These examples have in common a view of hypotheses as
being upheld by data. Environmentalism and creationism win
because their factual claims are unassailable, being mostly
common knowledge, whereas those of the opposing theories are
contestable. This is a radically different view from that taken by
Thagard. If social scientists were to approach the heredi-
ty/environment issue in a manner consistent with Thagard’s
theory, they would begin by agreeing that there are facts
needing explanation—that so and so reported such and such
correlation between the 1Qs of double-first cousins, and so
forth. An argument like Kamin’s, which produces a different
explanation for every fact, would fare poorly against an argu-
ment that explains all the facts from a few coherent hypotheses.

Are we describing a kind of bad thinking that Thagard’s theory
ought to help overcome, or is there some merit in this alter-
native approach to explanation? Both, we think, are true. In a
“mature” scientific controversy, irrelevancies have been shaken
out, and there remains a set of mutually recognized facts that
need explaining. In such a situation, the stronger theory—the
one best able to account for the recognized facts—ought to
prevail. Thatis a situation that Thagard’s theory, implemented
in ECHO, seems to handle nicely. In the murkier situations of
ordinary life and the soft sciences, howevcr, itis often uncertain
whether the facts in need of explanation have been properly
identified or are to be trusted. In such cases, there may be
reasons why a weaker theory should prevail.




We have been investigating explanatory hypotheses in a case
of special interest to Canadians, that of Ben Johnson, who was
stripped of an Olympic gold medal for alleged use of anabolic
steroids. The facts that need explaining consist mainly of labora-
tory test results indicating steroid use. There are a number of
other facts, however, that figure in some explanations—for in-
stance, that Johnson customarily drank sarsaparilla tea after a
race, that the bag containing his flask of tea was unguarded
during the race, and that strangers were seen in its vicinity. We
may call these contextual facts. These facts themselves do not
need explaining; there is nothing “suspicious” about them.
Nevertheless, an explanation gains plausibility if it weaves these
facts into its story. A simple “spiked sarsaparilla” theory fails
because of its inability to account for laboratory results indicat-
ing long-term steroid use. But a more complex theory-which
has Johnson taking steroids plus a masking drug, and enemies
spiking his sarsaparilla in order to defeat the masking drug-
starts to sound like a contender becausc it not only accounts for
the critical facts but also incorporates a variety of contextual
facts.

In criminal cases, contextual facts are typically used in argu-
ing motive, opportunity, and disposition to commit the erime,
None of these are vital issues if there is only one explanation that
satisfactorily accounts for the “suspicious” facts—that is, the facts
recognized as needing explanation. But when alternative expla-
nations are tenable, the one that makes better use of the
surrounding contextual facts is rightly to be preferred. Similar-
ly, the environmentalist explanation of IQ differences gains
strength because it weaves in many contextual facts about
cultural differences, social conditions, and historical anteced-
ents, whereas hereditarian hypotheses deal with little besides
kinship data and test scores. Some environmentalists have
woven in historical facts to support a conspiracy theory about
hereditarians, thus casting a general cloud of suspicion over the
hereditarians’ factual claims—again, a common courtroom strat-
egy, but one that in its own way contributes greatly to the
coherence of an argument.

Although Thagard's theory does not deal with contextual
facts, it seems that his ECrio program is quite happy to accom-
modate them. Perhaps contextual facts should receive less
sustaining activation than facts needing explanation, and per-
haps the connection weight between hypotheses and facts that
are merely used should be less than the weight between hypoth-
eses and facts that they explain. However, in our limited
experiments with Thagard's examples and in our Ben Johnson
case, there does not seem to be any need to modify activation
levels or weights. Sensible results are obtained by treating all
facts as equal and all positive connections as equal. For reasons
to be given later, however, we do not regard this as a good sign.

In another respect ECHO seems to he more limited than the
theory it implements. To settle on a winner, ECHO nceds
contradictions, which enter the network as negative connection
weights. Again, this is not a problem in a “mature” scientific
controversy, where basic disagreements have been identified.
But in many ambiguous or undeveloped areas of inquiry, there
may be competing explanations that do not clearly conflict. They
may occupy different levels of description, for instance. In such
cases, ECHO can lead to unfortunate results. This difficulty,
incidentally, was discovered by a group of li-year-olds who
were using ECHO to test their explanations in the Ben Johnson
case. It is more easily illustrated, however, with Thagard’s
Darwin example.

Suppose we enter with another hypothesis into the set of
propositions constituting the Darwin case. Call it the Satanic
hypothesis:

The Devil is responsible for differences.

This hypothesis contradicts the ereationist hypothesis, but it
does not contradict any Darwinian hypotheses. It doesn’t ex-
plain any of the evidence, but on the other hand, it isn't
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incompatible with any of the evidence either. When tested in
competition with the Darwinian and creationist hypotheses,
ECHO gives it a final activation level of .67, which puts it ahead of
three of the five Darwinian hypotheses. It gains this status solely
by virtue of contradicting a hypothesis that is defeated by other
hypotheses.

There seems to be two ways, then, in which Thagard’s theory
and its ECHO implementation need to be augmented to deal with
a larger range of explanatory problems. There needs to be a way
to compare competing but noncontradictory hypotheses, es-
pecially hypotheses at different levels of description. And there
needs to be a way to attribute coherence both to the explanation
of facts by hypotheses and to the use of contextual facts in
explanations. However, the theory ought to be able to dis-
tinguish between the two. Otherwise, elaborate stories that fail
to account for crucial facts will tend to defeat incisive theories
that explain crucial facts without reference to contextual infor-
mation. As educational researchers, we are particularly keen on
the use of ECHO as a way of guiding students toward argument to
the best explanation and away from the weaker kinds of explana-
tion that seem more prevalent. We were amazed in our initial
trials to find elementary school children taking naturally to
questions such as, “What hypotheses explain this fact?” and,
“What facts does this hypothesis explain?” They quickly caught
on to what ECHO was doing, saw it as reasonable, and became
interested in experimenting with the effects of suppressing
certain facts or introducing new hypotheses. Perhaps, as Bart-
lett concluded, human beings do not usually think this way. But
we see reason to hope that they could learn to do so.

Explanatory coherence as a psychological
theory

P. C.-H. Cheng and M. Keane

Human Cognition Research Laboratory, The Open University, Milton
Keynas MK7 GAA, England

Electronic mali: pch_cheng@vax.acs.ou.ac.uk and
mt_Keane@vax.acs.ou.ac,uk

If Thagard's theory is to be viewed as a psychological theory, its
principles need to be amended considerably. Furthermore, the
need for such amendments suggests that a purely parallel model
may not be optimal. Two main problems are evident from the
psychological perspective.

First, any psychological theory must acknowledge human
processing limitations. People are unlikely to have ECHO's
unlimited processing power to consider all of the interdepen-
dencies between a theory's propositions and the evidence. For
instance, the jurors empaneled at a fraud trial will likely find the
“propositions” involved difficult to evaluate hecause of the
introduction of new concepts, the large quantity of evidence,
and their interrelationships. A more realistic psychological ac-
count of theory evaluation would hence be one in which new
propositions and evidence are gradually assimilated in a piece-
meal fashion. Such a view of theory evaluation is supported by
the research of the new experimentalists (Ackermann 1985:
Franklin 1986; Galison 1957; Hacking 1983} in the area of the
philosophy of science, which contrasts with the holism espoused
by Thagard. However, to achieve this sort of piecemeal evalua-
tion, ECHIO would have to break the network up into smaller
subsets of the complete set of propositions and evidence and to
operate on those subsets in a more serial fashion. This intro-
duces several problems: 1. It seems unlikely that the combina-
tion of smaller subsets would aggregate to produce the same
result as the complete set of propositions processed in parallel
{because of the nature of such connectionist models). 2. There is
alsothe attendant question of how the different subsets might be
combined. 3. A further set of processes would he required to
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select subsets for consideration, and these would have to be
specified by the theory.

Second, in the model, explanation is instantiated as links
between the various units in the network. However, because
the psychological processes that underlie explanation are not
specified, one could just as well have substitnted “connected to”
or “associated with” for the terin “explains™ throughout the
article and the model would not need to be changed. An
adequate psychological theory must specify the processes in-
volved in “explaining.” In certain sciences, researchers spend a
significant amount of time determining whether a proposition
really explains something, weighing up strong and weak scnses
of a proposition, and attempting to separate ancillary, ad hoc
proposals from the basic tenets of a theory. Thagard hints at this
problem with the concept of explanation when he says that a
eausal sense of “explain” was used in the analyses, but this is
inconsistent with his initial statement that the theory should be
a theory of any form of explanation. From a modelling perspec-
tive, the determination of what it means to explain and what
eonstitutes a theoretical proposition have all the hallmarks of
heuristic, evaluative processes. Although such processes could
be modelled in a connectionist fashion, a traditional symbolic
treatment scems more directly applicable.

In conelusion, a psychological theory would require consider-
able additions not provided for in Thagard’s theory. The naturc
of these changes also recommends a conventional symbolic
model rather than a ecnnectionist one.

Assimilating evidence: The key to revision?

Michelene T. H. Chi

Learning Research and Development Center, University of Pittsburgh,
Pittsburgh, PA 15260

Electronlc mall: micki%olrdca@yms.cis.pittsburgh.edu

Thagard’s theory of explanatory coherence has several exeiting
and profound applications in psychology. Two crueial but unre-
solved issues in psychology are: (1) How does conceptual change
oceur? and (2) What kind of “transition mechanism” accounts for
these changes? These two questions most typically arise in the
domains of learning and development. In learning, one man-
ifestation of this issue concerns the transition from holding a
naive theory of the physieal world to holding a seientific or
Newtonian view. In development, the issue concerns the transi-
tion from one stage (such as preoperational) to another, more
advanced stage of thought (such as concrete operational). [t is
commonly thought that the shift from one kind of thought to
another, either from preoperational to operational, or from pre-
Newtonian to Newtonian, depends on the adoption of a set of
interrelated beliefs. (This wholesale adoption is sometimes
called radieal restructuring.) The dilemma has always been
trying to identify the “mechanisms” that enabled this transition
to take place.

The most promising aspect of Thagard’s theory is that it could
potentially uncover precisely what factors can contribute to
restructuring (or to conceptual change) without postulating an
explicit mechanism that is responsible for the transition. That is,
by implementing ECHO in a connectionist framework with
parallel constraint satisfaction, the model has the capability of
settling into a state “naturally,” thereby achieving restructuring
without identifying specific mechanisms for it. Thus, in some
sense, ECHO has bypassed the problem of identifying the “tran-
sition mechanism” that has puzzled psychologists for decades.
The implication of ECHO is that manipulating a few cohcrence
relations in a piecemeal way might in fact produce dramatic
shifts in one’s theoretical orientation or frame of thought.
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Although Ecno has this potential, what has ECHO accomp-
lished so far? To understand what could have caused the transi-
tion (i.e., to understand what caused one theory to be more
coherent than another), Thagard needs to model conceptual
transitions directly. This is almost an impossible task in the
historical context, somewhat less difficult in the developmental
context, but perhaps feasible in a lcarning context. Thagard has
attempted to model such a transition in the learning case by
modeling the belief revisions that a student underwent in
explaining the trajectories of projectiles while offering predic-
tions and receiving feedback. In the data cited in Ranney and
Thagard (1988), the shift exhibited by subject S. P.1. from anon-
Newtonian to a Newtonian framework occurred primarily from
encoding new evidence that either confirmed existing New-
tonian hypotheses or eontradicted existing non-Newtonian hy-
potheses. The advantage of this demonstration is that Ranncy
and Thagard could model the shift in conceptual change without
postulating the formulation of new hypotheses, as was necessary
in the historical cases (for example, Lavoisier had many new
hypotheses that were not entertained by Stahl). This is fortunate
because the mechanism by which new hypotheses are formu-
lated is as yet little understood, as Thagard knows. What
appears to have caused a shift from pre-Newtonian to New-
tonian eonceptions is modeled as the occurrence of new evi-
dence cither provided by the experimenter, or entertained by
the student, evidence that either confirmed or contradicted the
student’s existing hypotheses (the student initially had both
Newtonian and non-Newtonian hypotheses). Thus, in general,
Thagard's applications of his theory to the learning domain, as
well as to historical cases, point to two critical mechanisms
needed for restructuring: the acquisition or formulation of new
hypotheses and the encoding or entertaining of new evidence.

Unfortunately for ECHO's plausibility as a model of human
performance, the majority of psychological evidence regarding
conceptual change contradicts an implicit assumption underly-
ing ECHO's analyses of Ranney’s data. It is often found (in
Piagetian research, for example) that confronting a child with
evidenee that contradicts the child’s hypothesis usually does not
lead to the child’s rejection of that hypothesis. This suggests that
the erux of the matter may not lie in the straightforward provi-
sion of new evidence, as modeled in Ranney and Thagard.
Rather, the crucial insight for the subject is to realize that a
particular hypothesis explains a particular piece of evidence.
(This is the simplest case; [ will avoid adding qualifieations to all
other cases, such as realizing that two hypotheses are contradic-
tory, and so on.) Hence, what underlies theory revision may be
precisely the willingness to adopt or reject a belief that a
particular piece of evidence is explainable by a specific hypoth-
esis. (This is currently built into EC110 as a given.) This willing-
ness may in turn depend on the representation of a subject’s
current conception.

There is ancther issue that is relevant to psychology: What
does ECHO's network of explanations represent? By modeling
ECHO in a connectionist framework, Thagard is implying that
the connectivity per se ought to inform the person whose mind
the network embodies that a particular theory is more or less
coherent than another. Presumably, if the network of La-
voisier’s explanations is an accurate reflection of his memory,
then it is not surprising that Lavoisier is convinced that his
theory is the current one. This raises an intercsting dilemma,
however: Two contemporaneous theorists who hold opposing
views would presumably know about each other’s hypotheses as
well as the evidence that each theory’s hypotheses would ex-
plain. And yet, two contemporancous theorists would not come
to the same evaluation of their respective theories, as predicted
from ectc. This means that their representations must be
different sornehow. How they might differ ean easily be seen in
the arguments cntered into by the theorists. Many of these
arguments question the assumption that a particular hypothesis




explains a particular picce of evidence. This goes back to the
previous point that the critical “insight” is the willingness to
assimilate into one’s representation that a particular picce of
evidence is explained by a particular hypothesis. As psychologi-
cal evidence shows, one is unwilling to encode a piece of
evidence and its interpretation if it conflicts with one’s existing
hypotheses. Thus, we have cycled back to the original question
of how exactly individuals revise their initial sets of heliefs in a
significant way.

One other issue relating to ECHO's feasibility as a human
model concerns ECHO's exhibition of apparently superhuman
capabilities. In the behavioral decision-making literature, it has
consistently been found that simple lincar combinations of
evidence arc better at predicting outcomes such as success in
graduate school (Dawes 1971) or the severity of Hodgkin's
disease (Einhorn 1972) than human experts (c.g., physicians in
the case of diagnosing Hodgkin’s disease). The usual interpreta-
tion of these data is that humans excel at evaluating individual
pieces of evidence with respect to a hypothesis but are ex-
tremely poor at integrating multiple pieces of evidence. The
same superhuman reasoning ability may be exhibited by cio
in that it can resolve two discrepant views given all their
explanatory links, whereas humans only evaluate each indi-
vidual explanation. The psychological cominunity anxiously
awaits further empirical tests to clarify these important issues.

Two problems for the explanatory coherence
theory of acceptability

L. Jonathan Cohen
The Queen’s College, Oxford Univarsity, Oxford OX1 4AW. Engtand

Thagard's analysis of reasoning about acceptability is an interest-
ing new contribution to the field. However, it fails to meet at
least two requirements that any such analysis should aim to
satisfy.

1. Consider a situation in which a known fact, E, needs to be
explained and two rival hypotheses, H, and H,, are proposed for
the task. Suppose that H, explains E and also another known
fact, F. Suppose that H, explains F and also predicts a hitherto
unknown fact, P; and suppose too that this prediction is observa-
tiopally or experimentally confirmed and that H, also explains
P. In that case, Thagard’s systein would allow H, and H, to have
equal acceptability. But in the history of science, most re-
searchers have been inclined to attach greater value, other
things being equal, to a hypothesis that generates new knowl-
edge than to one that merely explains what we already know
{Bacon 1859; Lakatos 1970; Leibniz 1865). Good scientific ideas
have heuristic as well as explanatory power. They look to the
future as well as to the past. This feature is reflected in any
Bayesian analysis of reasoning about the evaluation of hypoth-
eses, because p(H/E) increases, other things being equal, as
P(E) decreases. 1t is also reflected in the Baconian method of
relevant variables (Cohen 1989, p. 152). However Thagard’s
analysis, however, makes no allowance for the merit of predic-
tive novelty, and, if widely adopted, would distort the evalua-
tion of scientific hypotheses in a way that might be seriously
detrimental to the progress of human enquiry. Of course,
Thagard could tack on an eighth principle that would attach
appropriate value to predictive novelty alongside explanatory
coherence, but this would be an ad hoc modification of his
theory, whereas the merit of predictive novelty is an integral
consequence of both Bayesian and Baconian analyses. By
Thagard’s own standard of simplicity, therefore, a Bavesian or
Baconian analysis is preferable in this respect.

2. Another feature of both Bayesian and Baconian accounts is
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that they offer a systematic, logical syntax for evaluating hypoth-
eses, because the former is tied to the mathematical calculus of
chance and the latter to a generalised modal logic (Cohen 1989).
It is thus possible in both systems to infer, for instance, the
degree of acceptability of a conjunction of two independent
hypotheses from the respective degrees of acceptability that
each has on its own, or to infer that where H, is the disjunction of
H, with some other proposition, H,'s degree of acceptability
must be at least as great as that of H,.

In Thagard's theory, however, as he himself puints out, the
acceptability of “P and Q” or of “P or Q" is not defined. So, in
general, no such inferences are possible, and Thagard argues
that this does not matter. ECHo, he says, hasnoneed to calculate
the acceptability of “P and Q,” because relations of explanatory
coherence tell you all you need to know about P and Q indi-
vidually. Clearly this assumes that acceptability is of interest
only in relation to single hypotheses. 1t is as if the ultimate
purpose of research were to provide a list of individual hypoth-
eses with high acceptability values. Though such a program
might conceivably satisfy those who have a certain kind of purely
intellectual interest in science, however, it falls far short of what
the practical interests of technology requirc. When you are
building a plane, for example, you rely on many more than just
one hypothesis, and the acceptability value of the conjunction of
these hypotheses is very much at issue.

Thagard also claims that his measure of acceptability is ap-
plicable to forensic reasoning about matters of fact. Yet on that
topic there has been extensive discussion in recent years—in the
literatures of jurisprudenee, philosophy, and statistics—about
how a conjunction’s degree of aceeptability relates to the de-
grees of acceptability of its several conjuncts (e.g., Allen 1986;
Cohen 1977; Dawid 1987; Eggleston 1983; Kaye 1986; Schum
1986; Williams 1979). There is a serious problem about whether
a Bayesian measure can be applied in such cases, or whether a
Baconian one is needed; the problem arises in regard to both the
criminal standard of proof (proof beyond reasonable doubt) and
the civil standard (proof on the preponderance of evidence).
Thagard’s theory of explanatory coherence, however, is not
even a candidate for consideration as a measure of acceptability
here, because it allows no application to the problem.

An example will make the point clearer. Imagine a civil case
against an insurance company in which the plaintiff has to prove
two independent points—that he has a paid-up automobile
insurance policy of a certain kind and that his accident was due
to such and such circumstances. Suppose he proves each point
with a probability of .6. Apparently he has proved his case as a
whole with a mathematical probability of only .36, and yet the
legal standard of proof may seem to require a probability of more
than .5 for him to win. Well, perhaps there are ways for a
Bayesian analysis to get around this difficulty, or perhaps the
Bayesian analysis should be replaced by one in terms of Baco-
nian prohability. But at least we have to take seriously the
problem of how to evaluate the acceptability of a conjunction in
relation to the acceptability of its conjuncts. It will not do to
imply, as Thagard implies, that the problem does not exist.

Iam not claiming that Thagard’s theory of acceptability has no
valid areas of application. My point is only that it clearly fails to
do justice to two kinds of context in which evaluations of
acceptability are important in our culture—namely, the heuristic
dimension of evaluation in science and the evaluation of con-
Junctions in technology and the courts. There are, of course,
trade-offs to be calculated in relation to any measure of accept-
ability. But it looks as though Thagard’s system is inferior in
important respects hoth to Bayesian and to Baconian measures.
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Thagard's Principle 7 and Simpson’s
paradox

Robyn M. Dawes
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Although 1 share Thagard’s admiration for the work of Pen-
nington and Hastie (1987, 1988), 1 interpret it somewhat differ-
ently. Thagard argues that they show that a jury’s verdict
depends on the “explanatory coherence” of the prosecution’s
story compared to that of the defense. 1 believe they do more.
Their “story model” of jury verdict is not just a descriptive one,
in which they can argue post hoc that coherence has been
achieved. Rather, it has the strong implication that the order in
which evidence is presented will influence the verdict.

Just as Thagard does not present a theory of explanation,
Pennington and Hastie do not present a theory of what con-
stitutes a “good story.” They do note, however, that the order in
which evidence is presented can affect the “goodness” ofastory,
and in their work they show that the order of the evidence does
indeed affect the verdict. In contrast, Bayesian analyses of jury
verdicts (and other conclusions) are independent of the order in
which evidence is obtained and presented. (The final posterior
odds comparing two hypotheses consist of the ratio of the
probability of the intersection of all the evidence and one
hypothesis divided by the probability of the intersection of all
the evidence and the other hypothesis; intersection is com-
mutative.) In addition to being inconsistent with a Bayesian
analysis, Hastie and Pennington’s conclusion that order has an
effect is compatible with our cxperience in forming judgments.

Thagard does have an analogous “strong implication™ in his
model. Specifically, the coberence of a set of propositions is
dependent on binary coherence (and in addition, the coherence
of a single praposition depends in turn on the set in which it is
embedded; section 2.1). That implication also conflicts with
other analyses, such as all probabilistic ones. The rcason is that
such analyses allow the possibility of a Simpson’s paradox rever-
sal in the relation between evidence and hypotheses, whereas
pairwise analysis does not.

This paradox is illustrated in Table 1. Principle 7 is in section
2.1 of Thagard’s target article. The entries are compound proba-
bilities, involving two equally likely hypotheses, H, and Hy, and
two bits of evidence, e, and e, H, is more probable given e,
than given its negation, and it is likewise more probable given e,
than given its negation. The posterior odds comparing H, and
H, are respectively 3/2 and 4/1. But H, is less probable given
the combination of ¢, with e, than it is given e, alone. The odds
are 3/1, not 4/1.

1s such a combination purely hypothetical? No. Let H, refer
to Jill's hypothesized preference for Mortimer over Jack; let e,
refer to the evidence that she has accepted a date with Mortimer
to a particular dance at the time Jack calls her to invite her to that
dance; and let e, refer to the evidence that she turns down Jack’s
invitation. The structure of Table 1 indicates that it is perfectly
rational to “discount” the impact of the rejection of Jack given
knowledge of the otherwise damning (to Jack) information that
she has accepted an invitation from Mortimer. Other examples
of such reversals can be found in Tribe (1971) and Falk and Bar-
Hillel (1983) (e.g., a suspect's being seen in a bar slightly drunk
15 minutes prior to a crime committed 12 minutes away and
quite drunk 15 minutes afterwards constitutes an “alibi,”
whereas either sighting alone can be interpreted as evidence of
guilt). For a discussion of the role of such Simpson’s paradox
reversals in thought and science, sce Messick and van de Geer
(1981).

Of course, it is very difficult to establish a general principle.
Hastic and Pennington do not establish that in all cases at all
times the order of the evidence makes a difference, but then

472 BEHAVIORAL AND BRAIN SCIENCES (1989) 12:3

Table 1. Simpson’s paradox illustrated
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they do not have to, for a Bayesian analysis indicates that order
shouldn’t ever make a difference. They have an easier job than
Thagard.

1 am concerned, however, that Thagard does not stick to his
basic binary hypothesis. For example, we read at the end of
section 2 that P, and P, may “together explain” Q, whereas “P,
and P, together explain not-Q.” I do not understand how we get
to “together” from the premise that we only speak “deriva-
tively” of the explanatory coherence of a set “as determined by
their pairwise coherence.” To be reasonable, that is, to deal with
reversals, the system must incorporate such possibilities. The
problem, however, is to determine what the system means
when it is extended in this way (this problem secms analogous to
determining what “a connectionist” interpretation of the Neck-
er Cube means other than that its interpretation in three
dimensions is not self-contradictory); see section 3 of Thagard’s
target article. Unless Thagard’s analysis and its realization in
ECHO strictly follow the binary hypothesis, they become—to me
anyway—indistinguishable from a verbal description of what the
people meant to he modeled could have thought, had they been
reasonahle people. (They were.)

Perhaps the problem about the relation betwecn the com-
pleteness of Thagard's analysis and its own internal coherence
arises because he is trying to do too much: He wants to reduce
hoth scientific and lay thinking to an associative basis, as if there
were only one way of thinking logically about a problem. This
approach follows that of Cohen (1981), who argues that because
people have no way of thinking rationally that transcends their
own thinking processes, these processes must e regarded on an
epistemological basis as defining rationality. The problem with
that conclusion is that when people think about a problem that
involves logical coherence, they can think about it in many
ways, and in fact they see the logical characterization problem as
existing apart from their own thought processes. As in percep-
tion (Neisser 1976), their orientation is to discover what is “out
there”; and although admitting the analytic rather than em-
pirical nature of reasoning to determine it, they nevertheless




use reasoning as part of the process of “discovery.” They be-
come—to use the phrase of Davis and Hersh (1981) in describing
how mathematicians actually think about their problems—"“clos-
et Platonists,” even though they cannot justify Platonism. Con-
sider, for example, the Paul Halmos tournament problem. The
person in charge of reserving a squash court for a 53-person
tournament may compulsively figure out multiple systems of
byes to determine how often it must be reserved, only to
“discover” suddenly that the answer is 52—because 52 entrants
must be eliminated and one is eliminated as the result of each
match.

Thus, arguments are rejected or accepted in a much less
coherent manner than Thagard’s analysis suggests; some vcca-
sionally even lead to bad conclusions. Perhaps the attempt to
provide a single principle that will lead both to a conclusion
based on certain evidence and to its subsequent rejection is just
tao ambitious. After all, some higher courts overturn the deci-
sions of lower ones because their reasoning was improper (e.g.,
the famous Collins case 19681), and some scientific arguments
overturn others. Such reversals of conclusions are not just a
matter of discovering a new evidence node, with everyone’s
associations between the existing ones changed only through
the relationship of the new node to them. If it were, new
experiments or diseoveries would be “crucial” in the sense that
Thagard implies they aren't.

I'm not saying that Thagard’s goal is impossible to obtain, I
just have my doubts. 1f Thagard can deal with Simpson’s para-
dox, that doubt will be lessened but not eliminated.

NOTE

L. Thelower courtallowed I minus the “exclusion probability” (thata
randomly constructed couple would have the characteristics of the
accused couple) to be interpreted as the probability that the accused
couple was guilty. The higher court ruled that the appropriate proba-
bility was that the accused couple was the guilty one given that the
couple committing the crime had the specified characteristics. (68 Cal.
2nd 438 P 2nd 33 66 California Reporter, 1968.)

Is Thagard’s theory of explanatory
coherence the new logical positivism?

Eric Dietrich

Departmant of Philosophy, Program in Philosophy and Computer &
Systams Sciences, State University of New York, Binghamion, NY 13901
Electronlc mall: diatrich@bingvaxu.cc.binghamton.edu

I view Thagard’s theory of explanatory coherence as philosophy
of science, and, if I ignore the program Ecro, I find his ideas
refreshing and important, in part because his theory is outside
the formalist legacy left to us by logical positivism. Thagard, it
seems to me, has helped make respectable the idea that scien-
tific explanation is a multifaceted enterprise and that the tools
formalists dearly love—logic and probability—constitute merely
one of the facets, and a small one at that. Of course, Thagard is
not the only one trying to make this idea respectable; we may at
long last be ridding ourselves of the shackles of logic and logical
positivism. I will retnm to this in the conclusion.

I do have some reservations about Thagard’s theory, how-
ever. Simply put, I'm not sure what his theory of explanatory
coherence is a theory of. Viewing his theory as philosophy of
science required a conscious choice on my part, because there is
at least one other way of viewing his theory: as psychology. Both
views seem to me to have problems. I will begin with the
philosophy-of-science view.

1. Explanatoty coherence as phliosophy of science. Thagard
begins and ends his target article with discussions of explanation
and methods for distinguishing good hypotheses from bad ones.
Here he is clearly attempting to locate his theory in the space of
competing theories in the philosophy of science. But, if his
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theary of explanatory coherence is philosophy, then what is the
program ECHO for? The claim that scientists accept or reject
hypotheses based on how their various parts cohere and how the
hypotheses cohere with one another can be made without using
a computer program. Harman has done it (1973), as have Kuhn
{1977) and Kitcher (1981). In fact, scientists themselves find this
claim quite plausible, especially those like astronomers and
paleontologists who cannot run experimental tests of their
theorics. Moreover, the program actually interferes with
Thagard’s argument. For example, EcHo invites such questions
as, Why does Thagard select the activation levels and excitatory
and inhibitory weights he does? and, Why is the number of
cycles ECHO takes to settle important? The answer to the first of
these questions is that it makes ECHO settle more quickly (see
sect. 4.2 and 12.2), and, as near as I can tell, the answer to the
second is that if ECHO settles quickly, we spend less money on
compute-time. From a philosophy-of-science perspective,
these answers are irrelevant.

Ihave another problem with ECHO, namely, that it must have
facts, hypotheses, and evidence distinguished for it ahead of
time., But what are the criteria for distinguishing amang these? 1
tried an example myself, not using EcHo, but using PLECHUPP
(Playing with EcHO Using Pencil and Paper) on Poincare’s
explanation (1952, pp. 46-63) of the Eureka Phenomenan (hav-
ing a sudden insight into a problem) and on the competing
explanation that insight comes from following rules. I found that
distinguishing among hypotheses, evidence, and facts in this
case was rather arbitrary. And because 1 wanted Poincare’s
model to win, I wasn’t sure that the way I distinguished between
hypotheses and evidence didn’t beg the question against the
competing, rule-based explanation. Thagard is aware of this
problem, I think {(see Thagard’s discussion of Lavoisier’s and
Darwin’s arguments, and section 7), but being aware of a
problem is not solving it. Moreover, it is more in the spirit of
Thagard's theory, viewed as philosophy of science, that proposi-
tions should change their status as hypotheses or evidence hased
on pressures for the propositions to cohere in certain ways.

One last problem with Thagard's theory construed as philoso-
phy of science is his taking the notion of explanation as a
primitive. This move makes his whole project seem question-
begging. Philosophers of science want to know what explanation
is. Because Thagard’s goal (in my view) is to develop a theory of
scientific explanatory coherence, it is perhaps all right to assume
some notion of explanation as a primitive for the short term, but
then he is not free to criticize other philosophers of science who
are attempting to explain explanation on the grounds that their
accounts do not do what his does. Thus, Thagard’s criticism of
Salmon (1966) and Glymour (1980) seems irrelevant and unfair
because they are trying to do what he is not: explain scientific
explanation.

2. Explanatory coherence as psychology. The existenee of
FCHO makes more sense (but not much more) if Thagard's
theory is viewed as a psychological one about how humans come
to believe a certain hypothesis. Thagard is quite right when he
says that his seven principles “are too general to have direct
experimental consequences.” If Thagard's theory is psychologi-
cal, then to test it he will need detailed predictions regarding
what ECHO networks look like when they settle, how long
(relatively) it takes them to settle, and what the weights and
activation levels are. And it would be interesting if ECHO's shifts
in beliefs correspond to those of human subjects. (Of course, it is
not the program ECHO that is relevant to this project, but the
equations implemented in the program.) It seems extraor-
dinarily unlikely, however, that the few equations Thagard has
for testing his psychological theory actually capture the dynam-
ics of human belief change and fixation. I for one believe that one
day we will have such equations; perhaps Thagard’s theory will
make that day arrive sooner rather than later.

3. Conclusion. According to Steve Downes, a colleague of
mine (personal communication), Thagard's confusion over
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whether he is doing philosophy of science or cognitive psychol-
ogy has a dark interpretation. He might think that understand-
ing how scicnce works is equivalent to understanding how
human individuals work. One hopes that Thagard does not think
this, because such a project leaves out the social aspects of
scientific explanation and is thercfore doomed.

I have a dark interpretation of my own for Thagard's confu-
sion. Clearly, the star of Thagard's target article is the program
ECHO. Thagard is also clearly proposing a theory in the philoso-
phy of science. If we rceall that one of the hallmarks of logical
positivis was its reliance on technical, formal devices derived
from logic for solving problems in the philosophy of science, we
can perhaps see a new positivism, a “computational positivism,”
moving in to take up where logical positivism left off. Computer
programs and a reliance on logic have already virtually ruined
artificial intelligence and cognitive science (Dietrich, in press a;
in press b). Philosophy may be the next to go—again.

On the testability of ecHo

D. C. Earle

Department of Psychology, Washington Singer Laboratories, University of
Exeter, Exeter EX4 4QG, England

Electronic mall: earfe.dc@exster.ac.uk

Thagard’s theory of explanatory coherence and its connectionist
implementation in ECHO is a significant achievement with some
interesting possibilities for future development. As the imple-
mentation of a theory of hypothesis evaluation in a philosophy of
science, ECHO has the particularly pleasing property of being
able to disregard contradictory evidence under certain circum-
stances. This capability is necessary for any sophisticated philos-
ophy of science if it is to accord with the history of science, but
frequently the provision of such a capability has a disturbingly
ad hoc nature: In ECHO the ability to disregard evidence is an
intrinsic property of the program.

Thagard rejects a rigid dichotomy between normative and
descriptive matters and proposes that the theory of explanatory
coherence can be applied to hypothesis evaluation in the philos-
ophy of science, in legal reasoning, and in psychology. As such,
ECHO is presented as a model of the behaviour of scientists, the
behaviour of jurors, and the behaviour of subjects in experi-
ments in psychology. It is intended that ECHO should be test-
able, as must be required of any scientific theory. In this
respect, a major concern is whether the initial conditions for the
application of ECHO to a particular situation are sufficiently
constrained to provide the testability and to enable the unequiv-
ocal interpretation of results required of a scientific theory.

Consider the application of ECHO to a case of hypothesis
evaluation in science. Suppose that ECHO prefers ane hypoth-
esis over another; and suppose that the scicntific community is
divided, with different groups of scientists supporting one or the
other hypothesis. Are we to conclude that one group of scientists
is hehaving rationally and the other irrationally—for example,
using arguments that are extraneous to explanatory cohcrence,
such as a prior and otherwise unsupported belief that incoheres
with the hypothesis preferred by Ecno? Such a possibility is
suggested in a case of legal reasoning in the discussion of the
Peyer case, and a similar argument might he presented to
account for the creationists’ refusal to accept Darwinian theory.
However, an alternative interpretation is that in this hypo-
thetical example, the specific application of Ecio models the
reasoning of one group of scientists but not that of the other—that
the failure lies not with the lack of rationality of one group of
scientists but with EcHO. It may be argued that hypotheses are
evaluated in relation to the wider set of heliefs of the individual,
and that some of these beliefs may he relatively immune to
disconfirmations or may be supported by different sets of evi-
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dence. If the initial conditions for the application of ECHO were
altered to include these other beliefs, then it is possible that a
differcnt end state would be reached.

There are a number of related difficulties here. One concerns
the question of what is to be counted as rational and what is to he
counted as irrational; another concerns the decision as to what is
to be included in the initial conditions and what omitted; and a
third concerns the weights and activation levels to be given
initially to particular items. It is shown that different end states
may be reached, dependiug on the initial settings of the param-
cters and on the priority given to a certain picee of data. If one
group of scientists values a piece of evidence more than another
group, then this may well aceount for the difference in the
decisions of the groups. Part of the problem is the large number
of free parameters in ECHO, which necessarily make it flexible in
its predictions.

Thagard suggests that the input to ECHO could be automated,
but in view of the argument presented here, this suggestion is
unconvincing, except perhaps for certain well-defined cases. If,
however, it is accepted that a failure by Ecno to match the
behaviour of an individual, or a group of individuals, in acertain
application cannot be interpreted reliably as a failure of ra-
tionality on the part of the individuals rather than a failure by
ECHO to model the reasoning of the individuals, then on the
basis of a similar argument, the success of ECHO to predict
hypothesis evaluation is just as equivocal. Human behaviour
and ECHO's predictions may be consistent, but for different
reasons. Suhjects in reasoning tasks arc notoriously bad at
describing their rcasoning processes (Nisbett & Wilson 1977);
the initial conditions for an application of ECHO are not easily
cstablished from subjects’ protocols or from other descriptions
of the reasvning process. Without an independently verifiable
way of cstablishing the initial conditions, including the values
for the large number of free parameters, the testability of Ecnio
as a model of hypothesis evaluation must remain limited. In this
matter, ECHO is no different from other work in artificial intel-
ligence where algorithms may successfully match human perfor-
mance but where it is difficult to establish that the underlying
processes are the same.

A major challenge for the future devclopment of EcHO will he
to find ways of independently establishing the intial conditions
for particular applications of ECHO. Enough has been accom-
plished already to make this endeavour worthwhile, and section
9 suggests that progress is already being made.

What's in a link?

Jerome A. Feldman

International Computer Science Institute, 1947 Center St., Berkeley, CA
94704-1105

Electronic maii: ffeldmand@icsi. berkeley.edu

One of the hopes for connectionist modeling techniques has
been that they will provide a useful scientific language for efforts
in various behavioral and brain sciences. Thagard's target article
is a beautiful example of how this is beginning to work out in
practice. The details of Thagard's theory doubtless nced refine-
ment, but the case for expressing competing approaches as
networks of positive and negative influences secms convincing.
The formulation is no mere recasting of logical or probabilistic
arguments—hcre the interactions of the elcments determine the
outcome. This is potentially of great importance, and my one
disappointment with the article is that more attention was not
paid to foundational questions.

One of the principal attractions of hoth logic and probahility
theory is that each has a rclatively clean and well-understood
formal semantics. Even ifnetworks of weights and activity levels
are hetter for describing many phenomena, they will not be fully




acceptable without some interpretation of the formalism. This is
much ore pressing i a philosophically hased application such
as this onc than in a neurophysiological model, for examnple. The
fact that the saine basic rules for network generation apply
across examples encourages one to believe that there might be
principled relations in explanatory cohereoce. The seven princi-
ples and their mapping onto octworks provide an ioformal
semantics, Lt no foundation. No one should expect acomplete
solution in such a preliminary exploration, but it was surprising
to find no acknowledgment that there was an issue. If the links
don’t represent probabilities {and they don’t), what do they
represcut? There is a practical side to this prohlem. If we
wanted to apply EC110 to an unsolved decision problen, how
would we know what choices of weights were adinissible?

Coherence: Beyond constraint satisfaction

Gareth Gabrys and Alan Lesgoid

Learning Research and Development Center, University of Pittsburgh,
Pittsburgh, PA 15260

We offer two observations about Thagard's veryimportant work
in this commentary. First, we note that the theory represents a
specialization of constraint satisfaction systems, making the
specifics of the specialization of particular importance. Second,
we musc ahout what it means to do dialectical thinking, to use
one’s built-in coherence processor as a tool.

Constraint satisfaction. Thagard’s principles provide a inap-
ping between a set of explanations and a conneetionist computa-
tional structure within which cohercnces can be caleulated. In
essence, Thagard asserts that explanatory coherence is a con-
straint satisfaction problem. For scts of explanations, observa-
tions, and assertions that can be structured according to his
seven principles, a conncctionist constraint satisfaction al-
gorithm can find a good fit to the constraints formed by these
explanations, observations, and asscrtions and can assess the
contribution each one makcs to that fit. Pointing out that this can
be donc is important. However, once the basic approach has
been proposed, further discussion must focus on the question of
which details of the approach matter. Principles 2(a), 2(b), and 5
equatc explanations with constraints. Principles 1, 6(a), and 7
arc general properties of parallel distributed constraint satisfac-
tion inodcls, described in explanatory coherence terms. Princi-
ples 2(c), 3, 4, and &(l1) offer unique flavoring to the general
proposal. Specifically, 2(c) reduces the weight of explanations
requiring cohypothescs, 3 describes how analogy can set up
explanatory links, 4 sets up a bias for data propositions, and 6(h)
increases the decay of hypotheses when there is unexplained
evidence. These four principles respectively account for the
influence of simplicity, analogv, evidence, and comprchen-
siveness on explanatory coherence. We expect that futurc de-
bate will focus on them.

Given a formalized set of explanations, Thagard’s principles
can organize them into a constraint structure. But how are
hypotheses and cxplanations formalized? Thagard recognizes
this problem and suggests several principles that reduce the
arbitrariness of the formalization process. Howcever, the cxtent
of reduction necessarily results in a loss of information. Presum-
ably, humans have additional reasoning inechanisms layered on
top of the basic capability Thagard presents. Thagard rccagnizes
that not all arguments can be rcepresented in ECHE, and points
out that he is dealing only with causal cxplanations, It will be
intriguing to see what other aspects of reasoning and arguinenta-
tion can be built on top of EcHo.

Toward dialectical process models.In his cxamples of jury
reasoning, Thagard demonstrates how his approach can provide
a useful framework for understanding and measuring explanato-
ry coherence. Howcver, jury reasoning is a fact-finding process
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that is very differcnt trom the jurisprudential reasening used in
deciding cases at law. Indeed, juries are instructed to consider
the facts only, and to take instruction in the law from the judge.
When cases are argued at law, different principles apply, such as
stare decisis, the principle that prior decisions should not, in
gencral, be overturned. Ashley (1988) has suggested that case-
based reasoning is a more dialcctical process than principle-
driven reasoning because it involves a search for the particular
features that differentiate precedent cases that were decided for
the plaintiff from thosc decided for the defendant. He suggests
that one needs to pav attention to the particular factors that
distinguish cases decided each way, introducing cut scores on
these factors.

For example, consider the importance in a trade secrets casc
of the number of people to whom the secret has been divulged.
Ashley suggests that instead of weighting this value in a con-
straint satisfaction system, legal rcasoning is better modeled hy
setting cut points on the dimension. For example, a case is
weakened if more than a few people have been told the secret,
However, on rarc occasions a successful casc has been made
even when thousands were told the secret. The chore then
becomes local rather than global—-to analyze the links to particu-
lar features in order to determine what distinguishes this other-
wise aberrant case. One could build constraint satisfaction
systems to do that, too, but they would be driven by precedent
rather than by causal reasoning. By forcing (clamping) large
weights on links from nodes representing cases to nodes repre-
senting the two possibilities of the plaintiff's or the defendant’s
having prevailed in the decisions for those cases, a model would
focus' on a subset of the weightings known to be generally
rclevant. The task would be one of discovering, rather than
building from, an cxplanation.

One way this might be done is by alternately operating in
global stare decisis mode as just described, or in a more local
mode in which subsets of the known relationships concerning a
set of cascs are separately cxamined. More generally, we hope
that it will be possible to build on the level of reasoning
described by Thagard’s theory to model more reflective think.
ing. Perhaps such rcflection involves the temporary construc-
tion of candidate systems of assertions, observations, and cxpla-
nations that are then subject to the “built-in” cohercnce
analyzing mcchanism. Such candidate subsystems might be
handled by the kind of attentional gating mechanisms recently
introduced by Schncider and Detweiler (1987).

We are intrigucd by the possibility of systems that combine
both forms of reasoning explicitly, that is, by dialectical systems
that use scveral different weighting schemes and then analyze
how they differ. It scems worthwhile to try to model a higher
plane of dialectical rcasoning that is served by, but goes beyood,
constraint satisfaction. Thagard has shown us how humans may
quickly evaluate cxplanations—we still need more work on how
explanations are generated in the first place.
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What does explanatory coherence explain?

Ronaid N. Giere
Center for Philosophy of Scienca, Universily of Minnesata, Minneapolis,
MN 55455

Thagard begins his target article by asking, “Why did the
oxygen theory of combustion supersede the phiogiston theory?”
Answering such questions has been a major goal of the philoso-
phy of science for as long as it has existed as a recognizable
discipline. Rejecting answers deriving from the philosophy of
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logical empiricism, Thagard would replace or supplement the
resources of logic with those of the cognitive sciences, particu-
larly artificial intelligence. This approach is gaining adherents
within the philosophy of science community (Darden 1983;
Giere 1988; Glymour et al. 1987; Nersessian 1984). In spite of
my sympathies with the general approach, it seems to me that
Thagard is still a long way from answering the questions he
poses.

Thagard claims that as a matter of psychological fact, indi-
vidual scientists reason and evaluate theories according to some-
thing like his model of explanatory coherence. Echo, he says,
“can handle very complex examples of actual scientific reason-
ing.” The revolutions in question took place, therefore, because
the scientists involved individually reasoned to similar conclu-
sions. This claim is not adequately supported by the evidence
Thagard presents.

The explanatory relatiouships inodeled by ECHO are obtained
by an intuitive analysis of texts written by major architects of
scientific revolutions, such as Lavoisier and Darwin. Tu both of
these cases, the texts in question were written long after the
principals had themselves become convineed of the correctness
of their views. Moreover, in each case the scientist’s purposce in
producing his text was not to record the thought processes by
which he became convinced of the correctness of his theory, but
to establish his claim on the theory and to persuade others of its
value. These purposes are so different that there is considerable
reason to doubt that a text produced in the latter context would
provide much insight into the former processes.

In his target article, Thagard refers to “the input given to
ECHO to represent Lavoisier’s argunent in his 1783 polemic
against phlogiston.” Latcr he repeatedly refers to “Darwin’s
argument.” These phrases suggest that what Thagard is really
modeling is not scientists’ reasoning but the structure of their
arguments, presented in what might be called “the context of
persuasion.” The most the model of explanatory cohereuce
explains, then, is why a scientist’s presentation favors his view
over those of his rivals. 1t presents his hypotheses as more
explanatorily coherent with the data and each other than those
of the opponents.

Thagard recognizes the objection that he might only be
“modeling the rhetoric of the scientists, not their cognitive
processes.” However, his reply that “there is some correlation
between what we write and what we think” fails to meet the
objection. Of course there is “some correlation.” The question is
whether there is enough. Thagard provides little independent
reason to suppose that there is sufficient correlation to use what
one writes as an indicator not only of what, but how, one thinks.
Why should written arguments constructed after the fact to
persuade others be a good indicator of one’s original cognitive
processes?

Now suppose we grant, for example, that Lavoisier’s presen-
tation cxhibits his theory as possessing greater explanatory
coherence than phlogiston theories. We still have no explana-
tion of why there was a revolution, whicli is to say, why others
adopted Lavoisicr’s presentation as their own. Because Thagard
treats “cxplains” as a primitive, he must agree with competitors’
claims about what explains what. Moreover, as Thagard allows,
different scientists may assign greater weight to some explanato-
ry relationships than to others. Thus, applying Thagard's own
model to the writings of Lavoisicr’s opponents would probably
result in their presentations of the phlogiston theory exhibiting
greater explanatory cohercence than Lavoisier’s theory. Even if
some of these opponents later adopted Lavoisier’s arguninents,
we are left without any explanation of why they changed their
minds.

The traditional philosophical objeetion to coherence theories
is that there is not enough of a connection between interual
coherence and representational fidelity to the external world. 1t
requires only theoretical ingenuity to construct a highly co-
herent explanatory network. Why shonld that provide much
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basis for thinking that the network so constructed represents an
external world beyond the given facts?

In response, Thagard might adopt a more normative stance.
His mode! of explanatory coherence, he might claim, captures
the normatively correct relationships among statements that
determine rational acceptability. Moreover, therc is a single,
“correct” presentation of the data and rival hypotheses that
reveals Lavoisier's theory to have greater explanatory co-
herence. The revolution took place because the scientists in-
volved were rational agents who followed the norms of explana-
tory coherence. That this might ultimately be Thagard’s position
is suggested by his remarks in section 10.5 on “the descriptive
and the normative,” and by the more extended discussion in his
book (1988, Chapter 7). In neither place does he provide any
reason to belicve that such norms are actually operative.

On the latter interpretation, Thagard’s inode! functions like
an inductive logic, thongh it is richer than the probabilistic
logics developed by the logical empiricists. The strong similarity
between these two approaches is largely due to the fact that both
attempt to analyze scientific reasoning in terins of more or less
formal relationships among statements, particularly statements
representing “hypotheses”™ and “evidence.” Although this as-
sumption is common in the artificial intelligence community, it
is less widely accepted in other areas of the cognitive scienees
such as cognitive psychology (Tweney 1985) or the neuro-
sciences (Churchland 1986).

My own view {(Giere 1988) is that a genninely “cognitive”
approach to explaining science mnust get beneath the linguistic
surface to the nonlinguistic representational mechanisms and
judgmental strategics operative in individual cognitive agents.
These mechanisms and strategies have representational signifi-
cance because they incorporate active cansal interaction with
the world, especially through experimentation. Scientific revo-
lutions emerge as the collective result of individual judgments
by memnbers of the relevant scientific community. There is no
need for any normative principles of rationality. Indeed, one can
allow a considerable role for “noncognitive” factors as well. The
result is a more faithful account of science as it really is.

Are explanatory coherence and a
connectionist model necessary?

Jerry R. Hobbs

SAI International, Menlo Park, CA
Electronic mail: hobbs@ai.sri.com

The general pattern for explanation is
H explaius E,

where H and E are sets, or conjunctions, of propositions. The
widely acknowledged eriteria for deterinining the “goodness” of
an explanation are that H should be as small as possible and E
should be as big as possible. We want more bang for the buck,
where E is the bang and H is the buck. These are the criteria of
simplicity and consilience that Thagard has writtcu about per-
ceptively in previous papers and in parts of this one; his discns-
sions of these criteria have been important in general aud a
significant influence on iy own thinking,

The most simple-minded procedure for ineasuring the good-
ness of an cxplanation would be to connt the propositions in E,
count the propositions in H, and subtract. Pick the theory that
has the highest such number and contains no contradictions.
(Let’s call this the Naive Method, and refer to the number as #E
— #H.) There are at least two problemns with this procedure—
what is meant by “explains,” and what are the individuating
criteria for the propositions in H aud E. They are problems for
Thagard’s method as well. He legitimately skirts the first of the




problems, and in section 7 he probably says ail that can reason-
ably be said about the second in a short article.

In any case, the Naive Method needs to be replaced by
something inore sophisticated. Thagard proposes a inore com-
plex method for evaluating theories by defining a relation of
explanatory coherence hetween propositions and then using
those relations as the links in a connectionist inodel ECHe that
computes the explanatory coherence of an entire explanation. It
turns out, however, that for every single one of Thagard's
examples, the Naive Method vields exactly the same resuit that
ECHO yields, This gives rise to the disquieting suspicion that ail
of this connectionist architecture and the theory of explanatory
coherence it rests npon amount to nothing more than a very
complex and possibly inaccurate procedure for doing subtrac-
tion.

There are two issues that need to be examined more closely
from the perspective of the Naive Method. The first is whether
we should always prefer deeper theories even where we do not
thereby expand the evidence explained. This is illustrated by
the example in section 4.3. Here, for Thagard, {H3} is the best
theory because in addition to explaining E1 aud E2. it explains
H1. Thagard’s intuition is that this gives it a greater explanatory
coherence. I'm not sure about that. If H1 is of no independent
interest, should the fact that it is aiso explained make {H3} a
better theory? In the Naive Method, if we follow Thagard, {H3}
explains {HL,E1,E2} and #E — #H =3 — 1 = 2. f we don't,
{H3} explains only {E1,E2} and #E — #H = 2 — | = I, the same
score carned by the theories {H1} and {H2}. Tt is in the former
case, when we follow Thagard’s intuition, that the Naive Meth-
od matehes ECHO's results. {In neither case do we include
explained hypotheses in H.)

This consideration turns out to be significant in the Peyer case
described in section 6.2. If we follow Thagard in valuing ex-
plained hypotheses and thus including them in B, then in the
case for Peyer’s guilt, #E — #H = 9, whereas in the euse for his
innocence, #E — #H = 7. This corresponds to the judgment of
guilt that EcHO reached. On the other hand, if we don't include
explained hypotheses in E, then #E — #H = 6{orbotb guiltand
innocence. This, recall, is the case that resuited in a hung jury.

The sccond issue is the use of analogy in evaluating theories.
Thagard views this as a scparate and legitimate criterion, but it
seems to me that it can be subsumed under simplicity and
consilience. The existence of an analogy does not by itself
enhance a theory’s explanatory power. It does so only when that
analogy can be seen to rest upon a deeper, underlying, perhaps
very abstract principle from which the two analogous explanato-
ry relations can be derived. It is not encugh for “H1 explains
EL” and "H2 explains E2” to be analogous. They must be so
becausc they both instantiate some common abstract principle
P. A particularly clear instance of this is Thagard’s one conerete
example of an analogy, in the Darwin case discussed in section
5.2. The two specific explanatory relations—that “human-
directed selection can resuit in new breeds” and that “natural
selection can resuit in new species”—are both instantiations of
the more general principle that “selection can result in new
varicties of living beings.” This is true even if the general
principle was not recognized until the analogy was construeted.

When a single mathematical theory is applicd to secmingly
different phenomena, the mathematical theory is the deeper,
underlying, abstract principle that the analogy between the
phenomena rests on.

Itis hard to find examples in science of analogons explanations
that do not rest on 2 common ahstract principle—a fact that by
itsell supports 1ny claim. But an analogy that, for me at least,
does not have such an underpinning is the anaiogical picture of
Thompson’s model of the structure of the atom: Electrons are
embedded in the nucleus of an atom as raisins are emmhedded in a
pudding. This analogy may help us visualize Thompson's model,
and the model itseif provided an explanation of ionization, but
the analogy does not, in iny mind, draw on any underlying
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structurai principle and is not in the least compelling as an
argument for the mnodel.

Ifan analogy lietween two explanatory relations, “H1 expiains
E1” and "H2 explains E2,” to be convincing, inust rest on a
deeper underlying principle P, then explauation by analogy can
be subsumed under the eriteria of sinplicity and consilience.
The explanation is simpler and more consilient because a single
general principle explains two, more specific principles, while
the original hypotheses continue to support the original evi-
dence. This observation transiates directly into the operation of
the Naive Method. Rather thau explaining {E1} with {H1}, we
explain {E1,E2,(EXPLAIN HI EI), (EXPLAIN H2 E2)} with
fH1, HZ, P}, so that #E — #I is increased by one. When
analogy is treated in this way, in the exainples of sections 4.7 and
5.2, the Naive Method vields the same results as ECHO.

I am sympathetic with the notion that the best theory is the
most coherent one; and L am at least agnostic regarding connec-
tionist models. But Thagard’s target article does not, unfortu-
nately, constitute an argnment for cither, because from the
examples presented, we cannot be convineed that ECHO is nore
than an excessively coinplicated way of inplementing an evalua-
tion metrie that involves neither and is surely far too simple.

Inference to the best explanation is basic

John R. Josephson

Laboratory for Artificial intelligence Research and Department of Computer
and Information Science, Ohio State University, Columbus, OH 43210
Electronic mail: ji@cis.ohio-state.edu

Lam in full agreement with Thagard and others that there exists
a powerful and ubiquitous form of inference that is built on
explanatory relationships. Yet I helieve that the explanatory-
coherence account proposed by Harman, and given computa-
tional flesh by Thagard, is seriously but subtly flawed.

Harman (1965) argued that “inference to the best explana-
tion” (IBE} is the basic form of nondeductive inference, subsum-
ing “enumerative induction” and ail other forins of nondeduc-
tive inference. He argued quite convineingly that IBE is a
common and important pattern of inference and that it sub-
sumes sample-to-population inferences, that is, inductive gen-
cralizations, as a special case. (This is my way of putting the
matter.) The weakness of his overall argument was that other
forms of nondeductive inference are not scemingly subsumed
by IBE, most notably popuiation-to-sampic inferences, that is,
predictions. The main problem is that the conclusion of a
prediction does not seem to explain anything. (Sce Josephson,
1982, pp. 107-30 for more details.)

This last point, and others, were taken up by Ennis (1968). In
Harman’s reply to Ennis, instead of treating predictions as
deductive or admitting them as a distinctive form of inference
not reducihle to IBE, Harman took the curious path of trying to
absorb predictions, along with a quite reasonable idea of IBE,
into the larger, vaguer, and less reasonable notion of “maxiiniz-
ing explanatory coherence” (Harman 1968). In this 1 think
Harman made a big mistake, and Thagard has foliowed him in
making it.

I think that there is a clear and basie form of inference that
gocs more or less as follows:

D is a collection of data (facts, ohservations, givens),

H explains D (would, if true, explain D),

No other hypothesis is able to exphin D as well as H does.
Therefore, H is probably true.

The confidence in the conclusion should (and typically docs)
depend on the following considerations:

(1) how decisively H surpasses the alternatives;

{2) how good H is by itself, independent of the alternatives
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(e.g., we will be cautious about accepting a liypothesis, even ifit
is clearly the best one we have, if it is not sufficiently plausible in
itself);

(3) how thorough the search was for alternative explanatious;
and

(4) what are the pragmatic consequences, including the costs
of being wrong and the benefits of being right;

(5) how strong the need is to come to a conclusion at all,
especially considering the possibility of seeking further cvi-
dence before deciding.

This inferential pattern is the basic one, I contend, with an
epistemic force and information-processing significance all its
own (Josephson et al. I987). The main goal of such an inference,
to arrive at a confident explanation of something, is a reasonable
one to pursue if we aim at understanding. But the reasouns for
wanting to maximize overall explanatory coherence are obscure.
Moreover, IBE, as I have just described it, relies intimately on
processing considerations not reflected in Thagard's model,
such as the formation of hypotheses and the search for alter-
native explanations.

One sign of the weakness of Thagard's model is the sym-
metrical links, which make the inodel unable to accommodate
logical implication or the asymmetry of cause and cffect. A
further sign of trouble is the “symmetry of cxplanation and
prediction” built into the model by way of the symmetry in
Principle 2(a) {note too the discussion in section 4.3 and the
remark in section 4.4). At first appearance it may seem that a
theory capable of explaining something is capable of predicting
it, and conversely; vet this convenient relationship can be scen
to break down rather quickly in realistic cases (see Scriven,
1962, for a classical criticism). Often we are in a position to
predict a fact without thus being in a position to explain it (as for
example when we trust someone else’s prediction). Further-
more, we are often in position to explain a fact without thus
being in position to predict it {namely, when our explanation is
not eomplete, which is typical, or when the explanation does not
posit a deterministic mechanism, which is also typical). Con-
trary to the thrust of Thagard’s model, it is failed predictions that
cause us to reject a theory, not facts which the theory could have
explained if they had obtained, but which did not happen to
obtain.

Because the nodes in Thagard’s model are propositions, with
the increase and decrease of activation levels corresponding to
increased and decreased fitness for acceptance, we may expect
that the spreading of activations from one node to the next
reflects the communication of evidential support. Whereas one
direction of the symmetrical Principle 2{a) corresponds reason-
ably well to IBE, and is thus a legitimate path of evidence, the
other direction seems to reflect a big confusion between expla-
nation, prediction, and a consideration of whether a proposed
explanation is itself plausibly explainable. Thus I disagree with
Thagard {and Harman) that, in general, an explanation conveys
evidence for what is explained, and so I reject the symmetry of
the central Principle 2(a).
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Does ecHo explain explanation? A
psychological perspective

Joshua Klayman and Robin M. Hogarth
Center for Decision Research, Graduate School of Business, University of
Chicago, Chicago, IL 80637

Like its author, EC110 has connections with philosophy, artificial
intelligence, and psychology. The focus of our commentary is
psvchological. What is the status of EC110 as a deseriptive model
of explanation?

At the heart of ECHO lie seven hasic principles specified in
section 2.2. Indeed, it is hard to imagine any system that
adhered to these principles and yet acted diffcrently from Echo
in any significant way. Thagard skirts the issue of whetber these
are really meant as descriptive psychological principles, but
ahnost all of them could be taken that way and would be
interesting as such.

The EcHO analyses described by Thagard might be viewed as
tests of these underlying principles. However, from a meth-
odological viewpoint, they do not constitute good tests. Sone of
the cases are just too easy. For example, almost any system that
tabulated arguments pro and con (e.g., Axelrod’s “cognitive
maps” [1976] or Franklin’s “moral algebra” [Dawes 1988])
would conclude from Darwin’s arguments that evolution was
better than creationism. Other tests, it could be argued, are
tougher, namely, the Peyer trial, which ended in a hung jury.
But in this case, it is not clear how ECHO’s conclusion should be
evaluated or what an appropriate outcome would be (a hung
model perhaps?). The descriptive adequacy of Thagard's prinei-
ples could be tested, but this task would be better accomnplished
through direct psychological experimmentation.

From a substantive viewpoint, EcHO does not model the
process of thinking, but rather its end result. All of the examples
presented come from prepared arguments, or from secondary
accounts. Although Ecuo tells us what one might conclude from
reading Lavoisier's arguments, it is important to recall that
Lavoisier had already established the intellectual agenda.
Moreover, once the network has been specified, most of the
interesting psychological judgments have been made either by
the person being modeled or by the knowledge engineer. What
evidence is relevant? Which hypotheses are supported or con-
tradicted by it? Which hypotheses are mutually incompatible?
What level of explanation is appropriate? Are two hypotheses
really the same or different? Are those pieces of evidence
redundant? That Ecio enters late in the process is demon-
strated by how soon one can predict which hypotheses will be
accepted. The oxygen/phlogiston fight is over by about round 10
(Figure 11), and even in the difficult Peyer case, the winners and
losers are established by about the 15th cycle (Figure 20).

So is ECHO psychologically vacuous then? Not necessarily.
EcHO might best serve as a model not of kot people think, but
of what they think. Here Thagard may have missed a uscful
analogy to the work of Pennington and Hastie (1986, 1988),
which he cites. Their claim is not that the jurors’ story structures
lead them to think the way they do, but rather that the stories
represent the way they think about the evidence and that their
decisions more or less follow from the stories constructed.

As a representational model, ECHO could help us understand
psychological processes. One intriguing possibility is to use
ECHO to study the dynamics of belief formation and revision,
looking at changes in the belief network as evidence is added or
taken away, as new hypotheses are introduced, or as new links
between hypotheses are suggested. The work by Ranney and
Thagard (1988) is a promising effort in this vein. EcHo could also
provide a framework for modeling and tracing a number of
interesting psychological phenomena. For example:

(1) The order of information presentation can have a major
effect on final beliefs (sec Hogarth & Einhorn 1989). Pennington
and Hastie {1986; 1988), for example, found that early informa-




tion has a strong impact on the way subsequent data arc in-
terpreted, and thus ou the final representation. An cio-like
analysis could help establish the locus aud function of such
effects.

{2) An important feature of ECHO is that hiypotheses activate
and deactivate data as well as vice versa. This clearly happeus in
the practice of science and Inay sometimes be normatively
appropriate (Koehler 1989). On the other hand, it may induce
inappropriate “belief perseverance” (Ross & Lepper 1980).
EcHO might provide a framework for distinguishing the legiti-
mate and illegitimate iufluenees of hvpotheses on the evaluation
of data.

{3) In problem solving, sudden insights somectimes emerge
from incremental changes in data and hypotheses (“aha” ef-
fects). Eciio could be used to elucidate the conditions that
trigger or enable such restructuring of beliefs.

{4) Scientists (and other people) collect information to test
hypotheses. How they do so can influence their beliefs (see
Klayman & Ha 1987; 1989). Ecnio might profitably be extended
to model how hypothesis testing strategies affect beliefs and vice
versa,

{5) Whereas Thagard treats probability as irrelevant, Ecno
might be used to gain insight into the origins of subjective
probabilities. In many ways, the activation states of the various
hypotheses could be thought of as reflecting subjective “degrees
of belief” even though they are not probabilities (cf. Gluck &
Bower 1988).

(6) Whereas Thagard discusses sensitivity analyses concern-
ing the parameters of activation, it may be more instructive to
apply such tests to the strueture of the network. What happens,
for example, when redundant evidence or straw-man hypoth-
eses are introduced? What if one ehanges the level of detail or
the number of layers of explanations-of-explanations? The fact
that ECHO doesn’t speeify how these aspeets should be deter-
mined is a weakness, but one that provides an opportunity to
test how such manipulations affect human thinking.

Finally, although ECHO's status as a descriptive or normative
model is unelear, it may still have prescriptive value. In particu-
lar, ECHO could find a useful niche as a tool for promoting more
effective problem solving and scientific exploration. Ifone could
claborate the belief network for an unsettled area of investiga-
tion, it might be possible to identify critical subquestions (e.g.,
“the whole thing hinges on whether H, is right or H,”), thereby
suggesting the more promising issues on which to foeus future
research. Ecnio might also help in resolving conflicts between
different investigators or schools of thought, clarifying critieal
differences or assumptions (“she says H, incoheres with H,, but
you don't”).

In conclusion, ECHO is not a psychological process model and
cannot provide good tests of its seven underlying principles.
However, it succeeds in modeling complex situations with
underlying processes that are simple, local, plausible, and few.
That makes it a promising framework for analyzing and under-
standing human processes of hypothesis evaluation and belicf
revision.

Explanatory coherence in neural networks?

Daniel S. Levine

Department of Mathematics, University of Texas at Arington, Arington, TX
76019

Electronic maii: bl44dsic utang. bitnet

Thagard's target article addresses a major issue for those in-
terested in either biological or artificial intelligence. The hy-
pothesis testing that he models falls into the class of reasoning or
inferential processes that have thus far not heen addressed
adequately by connectionist (neural) networks. Some cognitive
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scientists, such as Fodor and Pylyshvn (1988), have argued that
such processes cannot, in principle, be addressed within the
connectionist franiework. But our brains, made up of neurons
and synapses, wanage to perform such reasoning tasks (albeit
fitfully!); hience there inust be some way to understand mecha-
nistically how we can do them. Work like Thagard’s is a first step
toward such a mechanistic understanding.

Understanding of any coniplex cognitive process is facilitated
by breaking it up inte simpler and more accessible processes.
The major strength of Thagard’s work is that it breaks up the
testing of a theory into the implementation of several rules that
ineorporate simpler tasks. Coherence, incoherence, and analo-
gy can then be represented by various excitatory and inhibitory
links within a network, and the activation functions of nodes in
the network can be computed over time. Moreover, some of the
resulting dynamics are reminiscent of phenomena occurring in
connectionist models. For example, feedback between “ovi.
dence” nedes and “hypothesis” nodes in Thagard’s EcHO can
lead to selective negleet of data (section 4.8), thus embodying a
primitive form of the kind of sclective attention arising from
feedback between sensory and motivational nodes in neural
networks {(e.g., Grossberg & Levine 1987).

Yet significant gaps remain in Thagard’s model at both the
cognitive and the “neural” levels. At the cognitive level, the
model simply suggests acceptance or rejection of a given theory.
However, as new data are uncovered that conflict with the
current form of a popular theory, the attempt is usually made to
modify the theory rather than to abandon its entire structure.
The EcHO model does not suggest a criterion for when and bow
to modify a theory within its fundamental structure or to synthe-
size parts of two conflicting theories.

For example, the Darwinian theory of evolution underwent
modification within its originator’s lifetime and continues to
evolve (no pun intended) to the present day. In my opinion,
Thagard's target article is incomplete in its treatment of the
conflict that Darwin himself saw between the hypothesis that
species have evalved and the relative lack of transitional forms in
the fossil record. The EcHO simulations of this theory did not
incorporate the incoherence between that hypothesis and the
data, but simply combined the hypothesis with Darwin’s own ad
hoc assumption (“the fossil record is incomplete”). Tam not well
versed in the evolutionary biology literature, but my impression
is that biologists are still, within the evolutionary framework,
constructing less ad hoc explanations for the paucity of transi-
tional forms. Such cxplanations include hypotheses that muta-
tions are not purely random but are guided in some way by other
mutations or by environmental events.

At the “neural” level, Thagard, of course, assumed that the
various belief and knowledge representations in the network
were “atoms” without giving an explanation for how they might
arise from lower-order processes. This is not a criticism of his
work but an expression of a challenge to connectionist theorists.
Neural network theories of categorization and of segmentation
of the perceptual environment are already available (see
Edelman 1987, Grossberg 1988; and lLevine, in press, for
summaries of recent work). Going from categorization and
segmentation to constructs, knowledge, and beliefs should take
only a few more steps (though, as Neil Armstrong would say,
they are likely to be giant steps).

Although the work that still needs to be done is vast, Thagard
should be commended for building a bridge between several
different cognitive outlooks. The target article should be used as
a source for others attempting to build realistic theories of
knowledge representation.
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Explanationism, ecHo, and the connectionist
paradigm

William G. Lycan
Dapartment of Philosophy, University of North Carolina, Chapel Hill, NC
27599-3125

Explanationism, in epistemology or in the philosophy of sci-
ence, is the view that an inference is  war-
ranted/justified /rational/reasonable/legitimate/. . . when itin-
creases the “explanatory coherence” of a subject’s total belief
set—that is, when the resnlting belief set exhibits greater co-
herence than did the subject’s initial, preinferential belief set.
Explanationism admits of a weaker and a much stronger version:
A “weak” explanationist holds just that coherence increase can
per se justify an inference; a “strong” explanationist maintains
that coherence increase is the only thing that can ever justify an
inference. As yet there are very few straightforward strong
explanationists {Harman 1986; Lycan 1988}, even weak explana-
tionism has been hotly contested (Cartwright 1983; Hacking
1982; van Fraassen 1980). Thagard accepts the weak but rejects
the strong variety (section 10.4),

A persistent embarrassment to explanationist epistemology is
that the notion of “coherence” itself has remained airily vague.
The only immediately obvious candidate as a specific element of
coherenee is self-consistency or logical coherence, the bare
absence of self-contradiction. That feature alone gives epis-
temologists little to go on, and precious little else has been said
on the topic of what makes for coherence.! And interestingly,
even that feature is forgone or at least deemphasized by
Thagard, who thinks consistency is highly desirable but only in
its proper place. As his own centerpiece of coherence, Thagard
suggests that propositions cohere when they explain, when they
are cxplained, or when they join with other propositions in
explaining.

Though plausible, those suggestions in themselves arc no
more specific or testable than any other explanationist slogans to
date have been. It is notoriously hard to think of any realistic
way to implement sueh slogans. But Thagard's project is pre-
cisely to implement them.

He begins by taking coherence to be a binary relation on
individual propositions. In light of the total-belief-set holisin
espoused by explanationists under the original influence of
Sellars {1963) and Quine (1953; 1960), that choice seems pa-
thetically preliminary and unworkable. Worse, Thagard stipu-
lates that binary coherence is symmetric; for example, a proposi-
tion coheres exactly as much by being explained as by explain-
ing, other relations being equal. (Though explanation itself is
not symmetric, Thagard argues that the more general notion of
coherence is.) Yet Thagard relaxes neither assumption. And,
surprisingly, his results scem none the worse for his deliberately
naive treatment. ECHO's overall analyses so far square well with
the (crude) history of scicnce and with present-day intuitive
judgment. As Thagard admits, in any given case study, ECHO
gets a lot for frec: particularly (1) the data, (2} the initial
credibility of the data, (3) the “explaining” relation taken as
primitive, and (4} the partitioning of data and of explanantia inta
distinct atomic propositions. But even so, ECIIO does remark-
ably well at its nontrivial subsequent job of theory ranking. And
if EcHO continues to do well at more subtle and complicated
theory-ranking tasks, whether or not it also takes over responsi-
bility for some of the presently gratis (1)-(4), that will be fairly
big news for explanationists, indicating that cohercnce is not
only quantifiable but can usefully be taken as binary.

My only further question at this point concerns Thagard’s
allegiance to connectionism as a format for implementing his
explanationist model. He calls Ec1io "a straightforward applica-
tion of connectionist algorithms to the problem of explanatory
coherence.” True, syinmetric pairwise coherence of proposi-
tions is easily depicted as a mutually excitatory link hetween
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proposition-representing units in a connectionist network
(though the symmetry of excitation/inhibition strengths as well
is unusual in connectionist modeling). And the coherence of the
network as a whole can be represented by the connectionist
measure H (aptly respelled by Thagard for the explanationist
tradition as “harmany”}, which we want to maximize. But thesc
notational facts show neither that connectionism lends support
to explanationism nor the reverse. For pairwise coherence can
be equally well represented (on whatever machine) by a lincar
numerical function, and likewise global “network” coherence
by an agglomerative arithmetical function on unit “activation”
values: connectionist architecture has no particular advantage
over von Neumann architecture in the implementing of
Thagard’s explanationist device. Architecture does not dis-
tinguish ECHO from classical probability theory, standard or
nonstandard confirmation theory, or any other known calculus
of proposition credibility; all of them assign credibility values to
propositions as a function of the values of other propositions.
Thus, what Thagard calls “Ec1IO’s connectionist character™ is
not strongly marked.

In saying that, 1 mean no criticism of Thagard, who is com-
mendably modest in his claims and in particular disavows any
attempt at “neural plausibility.” My point is a gencral one: It is
increasingly fashionable to formulate one’s epistemological/psy-
chological theory or device in “connectionist” terms, ostensibly
as opposed to proof-theoretic or other good old-fashioned Al
terms. But it often unclear what advantage is being secured. A
model such as Thagard's {or Goldman’s 1986), whose “units”
represent whole propositions, bears no relation at all to nen-
rophysiology, and can derive no glory from some connectionists’
early claims to be engaged in neural modeling. its benefit must
be some more general computational advantage of parallel
processors over traditional artificial intelligence programs. But
seldom are we shown such an advantage. Typically, the models
in question could have been implemented just as easily on the
same hardware using traditional architecture. “Connectionist
models” of this and “connectionist approaches” to that are often
not essentially or even notably connectionist at all.

NOTE

1. See, however, the papers featured in a special issue of Linguistics
and Philosophy (February 1984; 7[1]) on “Coherence,” edited by
Douglas F. Stalker.

New science for old

Bruce Mangan and Slephen Palmer

Department of Psychology, University of Cafifornia at Berkeley, Berkeley,
CA 94720

Electronic mali: paimer@cogsci.berkeley.edy

Thagard’s target article embodies a paradox. On the one hand,
his theoretical view of the nature of science is progressive: He is
at home with Kuhn, Lakatos, Quine, and Duhem, with holistic
explanation and Gestalt shifts. His cxamples of scientific think-
ing are of the paradigm type, with classic examples drawn from
scientific revolutions rather than from the more prosaic realms
of “normal science.” And of course the model into which
Thagard puts his analysis of coherent explanation incorporatcs
one of the newest ficlds in cognitive theory and conpnter
simmnlation: connectionism.

On the other hand, the actual structure of Thagard's simula-
tion looks much closer ta Kant, witha tincture of Bacon. Thereis
nothing wrong with Bacon or Kant. As philosophers of science
they are a bit out of style, but that does not make them less
important or less potentially valuable for current thinking; mnch
current thinking is built on them. However, if one were given
the exercise of putting some of the more recent ideas ahont the




nature of science and scientific explanation into connectionist
terms, an architceture rather different from Thagard's would
probably emerge, one which would take advantage of more of
the resources of connectionism. For purposes of comparison, we
will later sketch an example of this sort. But for the most part, we
will consider some of the less “progressive” components of
Thagard's model and see how they contrast with the theoretical
ideas Thagard seems to helieve he incorporated in Eciio,

Holistic approaches to the philosophy of science go back at
least as far as Leibniz (see especially his New Essays 1765/1981)
and underlic much of Kant's work, the most influential being the
Critigue of Pure Reason (1787/1963) and the Critique of Judge-
ment {1796/1951). Perhaps the fundamental difference hetween
Kant’s holistic philosophy of science and the holism of the later
bwentieth century involves the degree to which the underlying
principles of cognition are thought to change. For Kant these
cognitive principles are a priori and absolutely fixed.

The Principles of Explanatory Coherence in Thagard's model
function very much as if they were a priori principles. They arc
prior to any hypothesis or data and re main invariant from case to
case; they serve to connect every hypothesis with a set of
particular data. This complex is then further integrated into a
single, maximally coherent whole, jointly constrained by a sct of
particular facts, and a set of unchanging principles of analysis
and explanation. Kant's approach has many similarities. The
Categories, for example, though analytically distinct, were un-
derstood to operate sitnultaneously in any cognitive or percep-
tual act. The final aim of cognition was the “synthesis of the
manifold.” The German-speaking focus on the unity of Ge-
stalten stems from Kant, and much of Kant's work aimed to
explain the cognitive process behind scientific thinking, with
Newton's method of analysis and synthesis (see Mackinnon
1978) as the great exemplar. But for Kant, as for Thagard, there
was no way the data, or any particular cognition or hypothesis,
could ever modify the hasic principles that structure the system.

The Dubem/Quine holism has a very different flavor. For
Quine (1961 in particular, as Thagard points out, there was no
absolute distinction between analytic and synthetic proposi-
tions, and propositions were organized into a “corporate hody.”
The first position would have horrified Kant; the second, ap-
plied to cognitive processes, would have passed as a tntism. But
Quine also held in Two Dogmas of Empiricism {1951/1961) that
all such principles could be conditioned and modified hy experi-
ence. The corporate body was not fixed. This is the significant
modern twist to holism, but it is not reflected in Thagard’s
model. The principles of explanation, as they operatc in ECL10,
are outside the model and thus cannot be changed except from
the outside. The principles used by ECHO condition the aualysis
in advance, hut are unaffected by any outcome of that analysis.

Thagard has a similar problem vis-a-vis Kuhn {1970). For
Kuhn and related thinkers, the fundamental principles are also
malleable. A scientific revolution means a shift in basic princi-
ples of explanation, For example, the movement from Aristo-
telian to Galilean physics was in large part a shift in what would
count as an explanation (see Feyerabend 1975). The notion of a
“natural place” veased to make cxplanatory sense, and other
notions such as mathematically specified prediction came to the
fore. Thagard's analysis of Darwin provides a very good cxample
of the importance of introducing, or emphasizing, new explana-
tory principles and not just new cmpirical findings or hypoth-
eses. As Thagard himself points out, the wse of analogy became
an important explanatory device for Darwin. Although an argu-
ment by analogy is generally weak and usually avoided in
modern science, Darwin was ahle to integrate it into his battery
of explanatory principles because no better alternative existed
and useful theoretical work could be done if it were accepted. So
for Darwin we may say that the explanatory principle of analogy
from the ohscrved to the unaliserved was in a sense recruited by
Darwin’s more specific hypothesis. Although hypothesis and
evidence can interact in ECho, the dynamic role of explanatory
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principles at the heart of Darwin's work in particular and
paradigm shifts in general currently stands outside Thagard's
model,

1t is therefore not correct to think of ECHO as modeling a
paradigm shift. A paradigm shift involves a basic change in the
mode of analysis, and nothing like this happens in Ecii0. Any
impression that ECHO does model something especially ger-
mane to the process of scientific revolution is mistaken, 1f
Thagard’s aim is simply to model the general stricture of
scientific thinking, then any specimen of scientific thinking
should do. Choosing examples solely from revolutionary mo-
ments in science is misleading, as it invites the inference that
paradigm shift is the process being modelled. Scientific revolu-
tions may involve a Gestalt shift, but not all Gestalt shifts that
occur in the process of duing science are harbingers of a scien-
tific revolution. One can suddenly “see the point” while doing
quite ordinary research within a given paradigm. Indeed, Ecuio
looks much more like Kuhn's model of “normal science,” in that
Thagard’s explanatory principles do fitnction as a kind of para-
digm, but a paradigm that cannot shift. We will return to this
point helow,

Thagard’s model also has an “inductive” quality that, in effect,
deemphasizes the role of hypotheses relative to modern think-
ing in philosophy of science. Even some neopositivists recog-
nize the importance of hypotheses as the organizing entity that
activates and focuses scientific work. The standard contrast is
with Bacon’s (1620/1960) idea that science was to he seru-
pulously inductive. Darwin again provides a good example, in
this case of the fundamental organizing role of his hypothesis.
The Origin of Species, as he once wrote to Lyell, ivolved
“inventing a theory and seeing how many classes of facts the
theory would explain” (Himmelfarb 1962, p. 157).

Ecno's architecture, however, looks inductive in at least two
ways. The first is harmless hut suggestive: Activation enters
from the evidence units and can only then move on to the
various hypotheses. Because the activation can circulate back to
the evidence units, this may have little real effect on hypothesis
choice. So although there is the form of evidentiary priority, it is
probably without great substance.

The second way in which an inductive tendency affects
ECHO's operation is more siguificant, because it may have driven
a wedge between Thagard’s official controlling idea—System
Coherence—and Ecuio’sactual method of selecting a hypothesis.
System coherence, also known as goodness, harmony, and so
on, is 2 metric that characterizes the global or holistic degrees of
consistency within the entire system. As with virtually any
connectionist network, ECHO must settle into a state of max-
imum goodness or coherence to work at all, But except for the
fact that activation at any given node will stabilize as the result of
this process, hypothesis choice in EC110 cannot be directly
equated with system coherence at all. Hypothesis choice in
EC10 is determined simply by comparing the discrete activa-
tions of a few hypothesis units with one another.

In contrast, considera more “holistic” and “deductive” way of
choosing between hypotheses, but onc that is still roughly
within the ECHO format: Activation enters the systcm, not
through evidence wnits, but via a given hypothesis wnit that is
“clamped” an. This hypothesis unit then evokes its own best-
fitting configuration of activation in the network. The hvpothesis
is then deactivated, the next hypothesis wnit is clamped on, and
the process is repcated for each remaining hypothesis, The
winuing hypothesis is the one that creates the most coherent
network. Note that in this case we are choosing the hest
hypothesis by observing its direct effect on the network as a
whole and not by wsing any indirect measure such as the relative
activation of the hypothesis units compared in isolation. Further
changes in EC110's architectire would probably be necessary to
implement this idea, but the general point should be clear: The
present proposal attempts simultaneously (1) to bring Ecno
closer to the modemn view of hypotheses as central organizing
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devices and (2) to use system cohcrence directly to evaluate
explanations in Thagard's sense.

A further step in ECHO's development requires a much bigger
conceptual change. If a connectionist nctwork can be made to
represent explanatory principles of ECHO’s general type, it
might be possible to move ECHO squarely into the later twen-
tieth century and provide it with mechanisms that will simulate
paradigm changes. The cssential innovation is somchow to
incorporate the paradigm within the network rather than having
it stand outside. What needs to be accownplished is to represent
explanatory principles themscives as units in the net in such a
way that {a) they functionally implement the excitatory (coher-
ing) and inhibitory (incohering) weights between pairs of data
and hypothcsis units, (b) they are selectively recruited in fitting
a hypothesis to data, and (c) they allow the systemn to learn
through feedback which explanatory principles are useful in
achicving maximum network cohcrence.

Although we have not worked out all the details, one way to
accomplish this might be to modcl each explanatory principle as
a multiplicative “gating” unit {Hinton 1981) that modulatcs the
excitatory or inhibitory connection betwcen pairs of Thagard’s
present units related by the corresponding explanatory princi-
ple. Thus, if two propositions cohere due to the “analogy”
principle, for example, the link betwecn them will be gated by
the “analogy” gating unit such that their mutual excitation will
occur only if the “analogy” unit is also active (see Figure 1A).
Similarly, if two propositions incoherc due to some explanatory
principle, the link between them will be gated such that their
mutual inhibition will occur only if the relevant gating unit is
active (see Figure 1B). In this way, thc links that represent
coherent and incoherent relations (a) can be effectively “la-
beled” by their explanatory principlc and (b) can be selectively
turned on and off depending on whether the relevant explanato-
ry principle is “recruited” by the relations among relevant units
when the to-be-evaluated hypothesis unit is clamped on. The
reeruiting is accomplished naturally by Hinton’s gating units
because of how the three-way multiplicative connections work:
The product of each pair of units is transmitted to the third. This
means not only that the explanatory unit will influence the
activations of the datum and hypothcsis units, but also that the
activations of the hypothesis and datum units will influence the
activation of the explanatory unit in the appropriate way. The
latter operation has the desired effect of selectively turning on
the explanatory units as needed, thus dynamically recruiting
explanatory principles in the process of evaluating the network’s
coherence vis a vis the clamped hypothesis.

Although such a network is based on Thagard's ECHO maodel,
it has distinct advantages for modelling automated hypothesis
evaluation within a dynamic paradigm. First, explanatory prin-
ciples are contained within the model itself-in the form of the
explanatory units—and thus play a direct and crucial role in
evaluating explanatory coherence. This has the desirable fea-
ture of allowing that, with a host of morc complex reasoning
procedures, the system could actually figure out what relations
hold between its network units and could make the neccssary
adjustments to represent these relations. Thagard’s present
network cannot possibly do this, becausc it does not contain the
principles of explanation in any explicit form. Second, additional
mechanisms could be incorporated that would amplify or at-
tenuate the activation of specific explanatory units to reflect
whether the corresponding modcs of explanation are in or out of
favor within the current paradigm. This could be modeled by
weights between another “special " unit that is always on and the
explanatory units, cxciting some and inhibiting others. Third,
and most important, leaming mcchanisms could be added that
would automatically adjust the amplification/attenuation of par-
adigmatic explanatory units in kecping with fecdback about
which kinds of explanations have proven useful in previous
analyses. This would allow the network to changc the basis of the
paradigm over time as cvidence accrues that certain modes of
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Figure 1 {(Mangan and Palmer). Modeling explanatory princi-
ples as “gating” units in a connectionist nctwork, Triangular
symbols represent special connections in which the product of
each pair of units gets transmitted to the third. Figure 1A shows
how an excitatory connection between a datum unit (D) and a
hypothcsis unit (H) can be implemented by an explanatory
gating unit (F), and Figurc 1B shows how an inhibitory
connection can be implemented by mcans of an intermcdiate
inhibitory unit. (The dotted line rcpresents an inhibitory
connection.)

explanation are valuable in evaluating the coherence of scientitic
hypotheses. In some small pcreentage of cases, these changes in
the underlying nctwork of explanatory units might be suffi-
ciently synergistic that an analogue of true Kuhnian “paradigm
shift” would emerge.

In summary, if this medified architecture works, it should
model some additional features of scientific cognition not cap-
tured by ECHO. Among these are: Paradigm or explanatory units
will manifest various levcls of salience by virtue of their weight
diffcrences, thus operating as an intrinsic part of the system
rather than as a discrete set of external principles; a hypothesis
unit will recruit its most compatible explanatory principles as it
recruits its data; the paradigm subsystem will have the property
of stability without sacrificing the ability to change substantially
under, say, data pressure. In other words, if this model (call it
PAN for Paradigm Analogue Network) is given data and hypoth-
eses sufficiently different from thosc on which it was trained, the
weights connecting the paradigm units should slowly change.
This would, of coursc, not only change the character of the
paradigm subsystem and coherence of the data and the hypoth-
eses, but the principles of explanation would simultancously
reconfigure. In this way paN, if itcould work, would move closer
to modcling paradigm shift in its normal sense. We want to
emphasize, however, that PAN is only meant to illustrate how an
ecto-like nctwork might conform more closely to current
thinking about the process of scientific evaluation of hypotheses
and so support Thagard’s original intuition—namely, that con-
nectionism may prove uscful in probing the nature of science
itself.

Acceptability, analogy, and the acceptability
of analogies

Robert N. McCauley
Department of Philosophy, Emory University, Atlanta, GA 30322

Thagard proposes a model of explanatory cohercnce for the
evaluation of competing explanatory hypotheses in which the
acceptability of propositions can depend, at lcast in part, on
analogical relationships that might exist betwcen a promising
hypothesis and a successful one as well as between their expla-
nanda (as summarized in his principle 3). Thagard’s enthusiasm




about the contribution of such analogics is considerable. He
repeatedly (and quite justifiably) cites as one of its outstanding
advantages ECIIO’s ability to factor such analogical relationships
into the assessments it makes. More important, Thagard sets the
default value of “analogy impact” at 1, which insures that “the
links conneeting analogous hypotheses are just as strong as those
set up by simple explanations.” Altliough it wili typically con-
stitute only one of many factors affecting ECHO's judgment,
Thagard acknowledges that at this setting “analogy can have a
very strong effect,”

In light of Thagard’s aspirations concerning ECH0’s psveho-
logical plausibility, it may be important that in controversies
about explanatory power, analogy frequently does not (and
probably should not) have such strong effects in people’s delib-
erations, because the strength of its effects turns on the the-
oretical commitments of the reasoner ECHO 1nodels. Who that
reasoner should be is not completely clear. Thagard becomes
more inclusive as the paper progresses:

(1) In the scientific cases, Thagard reconstructs the argu-
ments from the perspectives of the winners. Note that Table 1
includes only one of the evidential propositions (viz., E2) that
the fosers had advanced uniquely, and Table 3 has none.

(2) In the legal cases, by contrast, Thagard seems to reeon-
struet plausible outcomes of jurors’ deliberations that take into
consideration (sometimes conflicting) evidential propositions
from both the prosecution and the defense.

(3) At the end of the paper, Thagard claims finally that EcHo
is out “to capture both what people generally do and what they
ought to do.”

These comments raise the question of whose reasoning pro-
cesses guide the programmer and at what stage in the debate
they do so. The issue, in short, is how in any particular case the
programmer decides what gets coded as ECHO's input. (I am
suggesting that there is an important disanalogy between the
scientific and legal cases to which Thagard applies his model. )

Analogies are not the sorts of things that programmers can
code neutrally-nor, for that matter, are summaries of evidence
or even contradictions. The problem with analogies cuts more
deeply than the other two for Thagard’s model (a) because it is
usually not too difficult to get disputants to agree that they are
disputing, or even to agree about the foci of their disputes, and
(b} because Thagard presumes from the outset (illicitly, I fear)
the ability of inquirers (regardiess of their theoretical orienta-
tions) to recognize when any proposition explains another. (As
he states repeatediy, the point of this project is not to offer a
theory of explanation.)

The problems with explicating analogical reasoning are
legion, because virtually anything (from one standpoint or
another) can be analogous {on one count or another) to virtually
anything else. The specific problem here coneerns precisely the
fact that there is no such thing as analogy stmpliciter. Not only
the importance but even the mere possibility of an analogy is in
the eye of the (theoretically influenced) beholder. Analogics
make sense only from some (often implicit) theoretical stand-
point or other. Again, the problem for Thagard is whose stand-
point reigns in defining ECHO’s input and, in particular, its input
about analogies. The probiem is especially elear if ECHO is to
apply to cases of scientific reasoning (as with the cases of legal
reasoning that Thagard discusses) in the midst of the debates,
that is, before the case is settled.

Darwin’s attempted analogy between artificial and natural
selection, for example, does not move the nineteenth-century
creationist. The salient point for the creationist is that artificial
selection has never resulted in a new specics. The traditional
Darwinian replies that speciation requires much more time.
Unfortunately, the nineteenth-century creationist (at least) re-
mains unimpressed. If speciation is impossihle, as creationism
maintains, then additional time is irrelevant. Furthermore,
most Vietorian creationists had confidenee, if not in the pro-
nouncements of Bishop Ussher, then certainly in those of Lord
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Kelvin, wlo offered assurance that there was not nearly time
enough.

The point of this is not to defend creationism (“devil’s ad-
vocacy” is an inappropriate turn of phrase here on two counts),
but rather to emphasize that during theoretical disputes the
acceptability of proposed analogies is precisely one of the points
at issuc. It is exactly when disagreements about the relative
merits of compoting explanatory hypotheses arise that deter-
minations about the acceptability oftheoretically inspired analo-
gies is up for grabs. It is only after the resolution of such debates,
when one of the competing explanatory theories emerges tri-
umphant, that we confidently pronounce on the value of various
analogies. Consider Francesco Sizi's argument against Galileo
that there must be seven planets (and therefore no moons
around Jupiter) because human beings by nature have seven
holes in their heads (Hempel 1966)!

IfECHO offers normative guidance about the role of analogy in
explanatory reasoning, then, concerning any particular analog-
ical proposal, it only docs so, at best, after the fact. But that
could well be the place to which epistemology has come.

Optimization and connectionism are two
different things

Drew McDermott
Computer Science Department, Yale University, New Haven, CT 06520
Electronic mall: mcdermott@cs.yale.ady

My main objection to Thagard’s target article concerns its
emphasis. The word “connectionism” is really out of place in it.
The whole idea of connectionism is that mental fenction ought to
be modeled by deviees consisting of large numbers of smallish
units operating in parallel and eommunicating via fixed links—
that is, the way the brain presuinably does it. Thagard’s paper
proposes a model of explanatory coherence based on minimizing
a certain energy funetion. The independent variables are the
activation levels of various propositions. The objective funetion
is a sum, H, of terms that express the support and inhibition
relationships between these propositions. (See equation 1.) Itis
not cicar how to judge whether H is a good measure of explana-
tory coherence, but the use of connectionist “settling” tech-
niques is a distraction. They are probably unnecessary, because
the number of independent variables is quite small. I am no
expert, but I would guess that standard numerical-optimization
techniques (e.g., conjugate-gradient descent) would do better
than simulating a network of “units™; and they might focus
attention better on the properties of the H function.

Conneetionist techniques are distracting in another way,
because their use inevitably suggests that the author is hypoth-
csizing the existence of fixed loeations for various hypotheses.
He isn't, of course. His program must wire up the network anew
for every problem. (Many connectionist papers speak as if the
inevitable software simulation were a stopgap until the hard-
ware arrives, but Thagard can’t do that: His whole approach is
based on software.) The apology for the use of connectionism in
section 8.1 is really quite puzzling. There is no maore connee-
tionism in this algorithm than there is in cps.

With this confusion cleared away, we can examine the real
issue raised by the target article, which is whether the H
function is a good measure of explanatory coherence. My con-
Jecture is that it’s completely adequate. As with all measures of
success in nonmonotonic inference problems, the details of the
measure function are swamped by the properties of the al-
gorithm that generates things to measure. That's because if this
algorithm overlooks something important, any fine-tuning of
the combination of the remaining factors is futile. Unfortunate-
ly, we know very little about explanation generation. So it’s too
early to tell whether, for instance, it is an asset or a liability that

BEHAVIORAL AND BRAIN SCIENCES (1989) 12:3 483




Commentary/Thagard: Explanatory coherence

Thagard’s algorithm gives weight to links between propositions
based purely an the structure of the problem, and not on the
content of those propositions.

Coherence and abduction

Paul O’'Rorke

Department of information & Computer Science, University of California,
Irvine, CA 92717

Electronic mall: ororke@ics.uci.edu

The theory of explanatory coherence presented by Thagard
focuses on the problem of selecting a particular ¢xplanation from
among given competing alternatives. He presents an interesting
set of principles designed to capture the notion of explanatory
coherence and provides a conncctionist method for evaluating
competing explanations, Thagard's ideas are stimulating and
worthy of further study. At present, however, 1see three major
problems with his approach. First, hc appears to take a modular,
sequential approach to the construction and evaluation of expla-
nations. Second, coherence secms to be the only eriterion used
to decide whether to accept or reject explanations. Third, there
seems to be no distinction between passive, unconscious accep-
tance processes and active, conscious evaluations of competing
explanations.

What's wrong with a modular, sequentlal approach to con-
structing and evaluating explanations? Thagard’s system s given
explanations, but ECHO does not address the problem of how
they can be gencrated. At the University of California at Irvine,
my students and I have built anumber of computer programs for
automating ahduction. Initially, we tried to naintain a scpara-
tion between our models of the processes responsible for con-
structing explanations on the one hand and our evaluations of
explanations on the other. However, in computational experi-
ments involving physical and psychological explanations, our
initial systems sank in seas of explanations, most of which were
totally implausible. We were forced to introduce evaluation into
the construction process in order to control the search and
reduce the number of explanations gencrated. We now belicve
that construction and evaluation must he integrated, and co-
herence must play a role in the gencration of explanations.

What's wrong with coherence as the sole criterlon for deciding
whether to accept or reject a theory? Unfortunately, coherence
is not the only factor that plays a role in constructing and
evaluating cxplanations. We have found that an agent's goals
and priorities play important roles in evaluation. For cxample,
in diagnosis one typically constructs explanations of ahnormal
hehaviors of devices or systems. In diagnoses that occur in
diverse application areas such as medicine, space technology,
and so on, the consequences of explanations turning out to be
correct or incorrect play important roles in evaluating the
explanation. Engincers working on diagnostic systems for the
space station, for example, are explicitly directed by NASA to
develop systems that attend not only to the plausibility of
explanations but also to the associated risks. A flaw in eritical life
support, even if it is considered highly implausihle, shauld be
attended to sooner than a more plausible, but less dangerous
flaw because we generally give high priority to staying alive.

In Thagard's example of the Peyer trial, and in legal examnples
in general, the fact that a decision against the defendant entails
undesirable consequences for him should play a role in the
decision-making process. When a jury decides a case, they not
only reason about what happened; they also reason about what
will happen as a result of their actions. They worry about the
possibility that they will unjustly let a criminal go unpunished,
or punish an innocent. In our socicty, a strong desirc not to
punish innocents has been institutionalized in the concept of
guilt “beyond a reasonable doubt.” Thagard speeulates that this

484 BEHAVIORAL AND BRAIN SCIENCES (1989) 122

sort of bias might be implemented by tweaking ECHO param-
eters, but it is likely that machinery for reasoning about goals,
goal priorities, and consequences of actions with respect to goals
will also be necessary.

Actions and consclous reasoning play an important role in
evalyation. My final major worry is that Thagard's principles of
coherence and eonnectionist implementation are best suited to
modeling passive, unconscious sorts of acceptance processes.
One can imagine this sort of evaluation and adoption of explana-
tions taking place subconsciously—for example, during natural
language processing. Waltz and Pollack (1985) describe a con-
nectionist model similar to ECHO that parses “semantic garden-
path” sentences so as to produce activation histories that seem to
simulate our own subjective experiences with these sentences.
Civen a sentence such as “The astronomer married the star,”
their system goes through a sequence of pattems of activation
representing different interpretations of the sentence, just as
people seem to realize unconsciously that the celestial object
meaning of the word “star” cannot be the object of marriage so
the astronomer must be married to an actress.

The evaluation of explanations associated with complex diag-
noses, legal arguments, and (especially) scientific thcories
scems to require much more active reasoning and decision-
making processes. In some situations it is not necessary or ¢ven
prudent to accept one of a competing set of hypothetical expla-
nations, Instead, it may be neccssary to try to gather more
information. In addition, it is often useful to distinguish be-
tween explanations that can and cannot be acted on, beeause the
former tend to be more useful. In diagnosis, an explanation that
pins down the souree of a fault to particular malfunctioning
components is more useful in that it suggests the ohvious repair
plan of replacing the had parts. Similarly, in science, theories
that make predictions and suggest actions that can be taken to
verify or falsify the predictions are preferred over theories with
no observable conscquences.

This argument suggests that a full account of the difficult
cxamples chosen by Thagard will probably have to include
computational models of rational deliheration and planning.
This is one reason why some artificial intelligence (AD) re-
searchers believe that abduction (at least as Al researchers use
the term) is prohably “Al-complete.” Rather than taking this as
an indication that modeling ahduction is impossible or that
Thagard has taken on an intractable problem. 1 take this as a sign
that he is working out a view of a piece of a problem of
fundamental importance. It will be interesting to see his ideas
combine and compete with ideas proposed by Al rescarchers
and others attempting to discover principles underlying cog-
nitive processes associated with explanations.
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Probabillty and normatlvity

David Papineau
Department of History and Philosophy of Science, University of Cambridge,
Cambridge CB2 3RH, England

Eci0 is an elegant and impressive program, hut I have doubts
about some of the philosophical and psychological claims made
on its behalf.

Thagard argues that the model of theory evaluatian embodied
in ECHO is superior to probabilistic models. In particular, he
doubts the availability of the various probahility judgments that
probabilistic models necd as input (sections 8.2 and 10.3).

However, ECIO itself assumes independently given “expla-
nation” and “contradiction statements” as input. Often these




seem little different from probability judgments. For example,
in scction 2.3 (para. 8), Thagard says that alteruative explana-
tions are treated as contradictions because “their conjunction is
unlikely.” More generally, EcHO deals with choices between
competing explanatory hypotheses, but not with which hypoth-
eses are allowed to enter the competition. This, too, argnably
presupposes judgments of prior (iin}probability.

It is true that EC110, at least as so far applied (but see section
4.1), starts with nonquantitative “explanation statements,”
rather than numerical probability inputs, and correspondingly
yields “on-off” conclusions, rather than numerical probability
outputs. Thagard takes this te enhance the psychological realism
of ECHO (sections 3, 8.2, 10.2). However, even if we grant
Thagard this psychological realisin for the inoment, we can still
have doubts ahout the normative significance of ECHO. For even
if our natural psychological inclinations are qualitative, surely it
would be better, in both scientific and legal contexts, to be
sensitive to the prior probabilities of explanatory hypotheses
and the varying degrees to which they render the evidence
unsurprising, and to have a wider repertoire of responses than a
simple “yes” or “no.”

Moreover, given this normative point, we can then ask
further guestions abeut ECHO's psychological realism. For,
after all, theory choice in both law and scienee is a bighly self-
eonscious enterprise, where practitioners are quite capable of
recognizing that it is better te reason probabilistically. And |
would argue that practitioners in both areas have widely recog-
nized this, and so often do reason probabilistically. (For exam-
ple, in civil cases juries are explicitly required to decide “on the
balance of probabilities,” in contrast with eriminal cases whose
speeial eircumstances require guilty verdicts to be “beyond a
reasonable doubt.™

Even if simple qualitative evaluations of explanatory hypoth-
eses are in some sense “natural” to human beings, self-conscious
refleetion can nevertheless lead to different people in different
contexts opting for more sophisticated quantitative ways of
evaluating hypotheses. This seems to me to make it doubtful
that “hypothesis choice” is a well-defined psychological catego-
ry in the first place.

There is a gencral moral here: Model-builders who are after
psychologieal realism should concentrate on mental processes
like visual pattern recognition or speech processing and should
shun the kind of mental process traditionally discussed by
philosophers. For the latter processes are precisely of the kind
whose identities are constantly being transformed and frag-
mented by self-conseious normative reflection.

Explanatory coherence In understanding
persons, Interactions, and relatlonships

Stephen J. Read® and Lynn C. Millert

#Department of Psychology, University of Southern California, Los Angeles,
CA 90089-1061 and PDepartment of Psychology, Scripps College,
Ciaremont, CA 91711

Electronlc mall: #read(uscvm.bitnet

We examine the imnplications of Thagard's model of explanatory
coherence for two major issues in social psychology and the
psychology of personality: (1) the role of coherence in arecently
proposed theory of attribution, and (2) the role of coherence in
individuals’ inodels of themselves and others.

Coherence in atfribution theory. Recently, several authors
(e.g., Lalljee & Abelson 1983; Read 1987) have presented a
theory of attribution based on Schank and Abelson’s (1977)
knowledge structure approach. According to this theory, the
typical attributional problem is to explain a sequence of actions
involving one or more individuals. To understand such se-
quences, people use detailed social and physical knowledge to
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construct a causal scenario that characterizes how the actions of
the individual(s) hang together to form a plan aimed at the
attainment of some goal(s) (Read 1987). Thus, social explanation
is akin to creating a story of how actions by individuals go
together.

To understand a sequence of behaviors, people must often
characterize it in terins of higher-order structures such as goals,
themes, scripts, or plans, which describe the relations anong
the actions and go beyond the individual actions {Abelson &
Black 1986). For example, going beyond the causal relations of
the individual actions and recognizing that a sequence of events
is a drug arrest suggests that the participants are acting as they
do hecause of their roles as drug dealers or undercover police
officers. Or realizing that a sequence of events is an assault
rather than two lovers playfully wrestling leads to very different
explanations of the behavior.

How do we decide whetber a particular structure is appropri-
ate? One major criterion is how coherent it would be with the
actions (Read 1987, Wilensky 1983). Thagard's model provides
an elegant approach to understanding how people might choose
among alternative knowledge structures as characterizations of
action sequences.

Different seenarios can be constructed out of the saine set of
facts, using different knowledge structures. Which knowledge
structures are chosen and which scenario is construected de-
pends on which is more coherent. For example, if two different
structures, lovers’ wrestling and assault. were potentially ap-
plicable, we should prefer the one that requires fewer assump-
tions (simplicity} and is able to handle more of the sequence
{breadth). In addition, we might prefer structures that are
consistent with previous interpretations of similar events (analo-
gy; e.g., we recently observed a couple roughhousing in a park).
The idea that a hypothesis will be more coherent if explained by
other hypotheses further suggests that a characterization of an
event sequence would be more coherent, and thus more likely
to be selected, if it could he explained by other features of the
persons involved, such as personal eharacteristics, goals, or
ahilities. Finally, Thagard's model suggests that we should be
unsatisfied with the application of a structure to a sequence if it
leaves many of the facts and events unaccounted for.

Coherence of models of personality and persons. How do the
various behaviors, beliefs, and motives of a particular person “fit
together” to form a eoherent systein? This question isan old and
important one for personality theory {(Allport 1964; Read &
Miller 1989a: 1959b), but one that is particularly troublesome
methodologically.

Let us consider how Thagard’s simulation may help us explore
such idiographic coherence quantitatively. First, Thagard ar-
gues that

a system S will tend to have more global coherence than another if (1)

S has more data in it; (2} § has more internal explanatory links

between propositions that cobere because of explanations and analo-

gies; and {(3) S suceeeds in separating coherent subsystems of proposi-

tions from conflicting subsvstems. (sect. 2.3, para. 12)

Individuals are likely to differ in the extent to which their
systems (e.g., belief systems, self-systein) eohere. Thagard's
madel suggests, for example, that more coherent self-systeins
would be those in which a given individual has imore accessible
sclf-relevant data, those in which there are inore “internal
explanatory links” between beliefs, hehaviors, and self-concep-
tions, and those that “succeed in separating coherent sub-
systems” of beliefs, behaviors, and self coneeptions “from con-
flicting subsystems.” Thus, an individual might understand
that one suhset of behaviors, self-eonceptions, and beliefs co-
heres under some circumstances (e.g., with a close friend to
whoin one can make intimate disclosures) but a different set of
beliefs, self-conceptions, and behaviors would cohere under
different circumstances (e.g., with strangers). Such conflicting
subsystems might then cohere at a higher level for people
because they recognize a higher-order explanation that links
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them (e.g., avoiding rcjection is nsually an important goal but
is deactivated when with accepting friends).

We could also asscss how the svstem eoheres—that is, we
could examine why behavioral ohservations and beliefs cohere
for an individual the way they do. How does the individual
weigh beliefs and behaviors in selecting hypotheses and what
hypotheses and analogics support this belief svstemi? What
would happen if different alternative hypotheses about the self
were introdiiced? What would it take to change the activation of
leading hypotheses for a particular individual?

Thagard's approach also allows ns to examine why different
individuals’ models of the samc person differ. Presumably,
individuals who have more data about the person being exam-
ined {e.g., close friends) will have more coherent representa-
tions. Also, the order in which we arc exposed to various pieces
of information can affect the likelihood that an individual will
select a given hypothesis and retain it (even in the face of
counterinformation and equally plausible alternative hypoth-
eses). Analogies to past relationships and preexisting knowledge
structures (c.g., stereotypes) may also bias the process of build-
ing models of persons in the currcnt rclationship.

In addition, for models of self, interactions, others, and
relationships, how docs the coherence of the models change as
new information is added to the system? Could we examinc
changes in such systems developmentally, during therapy, or
during the development and dissolution of relationships? These
are all exciting questions, and Thagard's model may prove an
important step in providing a methodology to address them
idiographically—that is, at the level of the unique individual or
relationship.

Measuring the plausibility of explanatory
hypotheses

James A. Reggia

Departments of Computer Science and Neurology, Universily of Maryland,
College Park, MD 20742

Electronic mail: reggia@mimsy.umd.edu

Thagard’s theory of explanatory coherence {TEG) provides a
broad and useful framework for considering the plausihility of
explanatory hypotheses. Because TEC is intended to apply to
“reasoning in everyday life,” it seems appropriate to compare it
with a related but less general framework, parsimonious cover-
ing theory (PCT), which also provides an application-
indecpendent theory of explanatory coherence (Reggia et al.
1983; 1985). PCT differs from TEC in that it is restricted to
consideration of explanatory hypotheses in general diagnostic
problem solving, although it has been adopted for a number of
nondiagnostic applications. Because of its restricted ap-
plicability, it does not address some issues of TEC (e. g., analogy).
However, like TEC, PCT precisely defines the notion of explana-
tory hypotheses and what makes them plausible, has been
applied to specific applications, and has been formulated as a
connectionist model {Peng & Reggia, in press; Wald et al., in
press). Because of spacc limitations, I will restrict my attention
to comparing TEC's measure of “degree of coherence” {Principle
2¢) to the related notions of plausibility and probability of
explanatory hypotheses in the simplest version of PCT. Our
experience with PCT and diagnosis suggests that counting
propositions {TEC Principle 2¢) is an inadequate measure of
“coherence” or plausibility. {Principles 6b and 7 also appear to
conflict with PCT, but are not considered hcre.)

In the simplest form of PCT, there is aset of disorders, D, and
a set of manifestations (“symptoms”), M. For each disorder, d,,
there is a connection {association) between d; and each man-
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ifestation, m;, that can be cansed by d;. A subset of M, denoted
M. A set of diserders, D, is called a cover of the given M+
when the disorders in D, can cause all of the manifestations in
M+, Aset of disorders, 1y, is an explanatory hypothesis if (1) D,
isacoverof M+, and (2) D, is parsinionious. Ronghly speaking,
asserting the presence/absenee of manifestation m; or disorder
d, in PCT corresponds to a proposition in TEC, and a par-
simonious cover represents specification of the function defin-
ing system coherence (TEC Principle 7).

A diffienlt problem in diagnostic reasoning theories in gener-
al, and in PCT in partienlar, has been how to define precisely
what is meant by the “best,” “most plausible,” “simplest,” or
“most parsimonions” explanation for a given set of facts (deKleer
& Williams 1986; Josephson et al. 1987, Peng & Reggia 1957,
Pople 1973; Reggia et al. 1983; 1985; Reiter 1987). Previous
notions of plausihility have largely been based on subjectice
criteria; we consider two of these here.

An carly criterion of plausibility used in PCT and by others is
similar to TEC Principle 2e. It is called minimal cardinality.
Explanatory bypotheses with the smallest ninber of hypoth-
esized components are preferable. In applying PCT to specific
diagnostic prohlems, it quickly beeame evident that minimal
cardinality is an inadequate mmeasure of plausibility. For examn-
ple, in medical diagnosis two common diseases are often morc
plausible than a single rare diseasc in cxplaining a given set of
symptoms (Rcggia et al. 1985); and in electronic diagnosis
analogous examples exist {Reiter 1987). For this reason, PCT as
well as other models of diagnostic inference have adopted a
more relaxed eriterion of plausibility called irredundancy: A set
of disorders, D,, that covers (causes all of) the manifestations in
M+ is irrcdundant if it has no proper subsets that also cover
M +. Although it docs not favor the smallest set of propositions
{as does TEC Principle 2¢), irredundancy is a prefcrable eriterion
because it handles cases like the medical and electronics exam-
ples referenced above while still constraining the number of
disorders in a hypothesis. However, irredundancy has the
problem that in larger applications it may identify many im-
plausible hypotheses as well as the plausible ones; and as
indicated below, in some cases it may still fail to identify the
most reasonable hypothesis.

The criteria used in most theories of explanatory plausibility,
including those of TEC and PCT, are subjective. An important
question is whether one might devise objective measures of
plausibility and then ask under what conditions various subjce-
tive criteria would work or fail according to the objective
criterion. We have recently gencralized Bayes's Theorem to
apply to a restricted class of diagnostic prohlems formulated in
PCT (Peng & Reggia 1987). Each disorder, d,, is associated with
its prior probahility, p,. Each casual link is associated with a
number, ¢, the causal strength from d; to m, representing how
frequently d, causes m,. Under assumptions fess restrictive than
those traditionally made with Bayesian classification, the rela-
tive likelihood L{D,,M *) of any potential cxplanatory hypoth-
esis D, given the presence of M+ can he calculated using
relevant p, and ¢;; values. Using the objective, albeit limited,
measure L{ID;, M *+), onc can ask under what conditions various
plausibility criteria such as minimal cardinality, irredundancy,
and others would he guaranteed to identify the most prohable
hypothcsis.

Analytical treatment of this question leads to a number of
interesting results {Peng & Reggia 1987). For cxample, minimal
cardinality is an appropriate criterion only when, for all disor-
ders, d,, the prior probabilities are very small and about equal,
and the ¢, arc fairly large in general. Otherwise, it may be that
the most probable cxplanation does not have minimal car-
dinality, supporting the conclusion above that counting is not
sufficient.

Thagard points out (section 8.2) correctly that in some non-
diagnostic domains the probabilities do not exist. They do not




really exist in diagnostic applications either. However, hecause
TEC and PCT are intended to lic theorics that encompass
diagnostic reasoning, they cannot ignore measures of likelihood
that go beyend counting, be they numeric probabilities or other
nounumeric, subjective weasures. Some weasure of “prior
plausihility” or “intrinsic merit” and “conditional plausiliility™
of causation is essential in diagnosis and scems to me to be just as
important in scientific and legal reasoning (Thagard may agree
with this to some cxtent; sce section 4.1 on ECHO). Basing
cohereuce on counting propositions as in TEC Principle 2c would
thercfore appear to need revision, at least to enconipass diag-
nostic inference.

TEC provides a liroad and useful framework for considering
these and related issues. Although one can always argue aliout
specifics, as | have done here, the overall thrust of Thagard's
work strikes me as being in the right direction, and it will he
very interesting ta follow its cvolution.

EcHo and staHL: On the theory of
combustion

Herbert A. Simon

Department of Psychology, Camegie-Meljon University, Pittsburgh, PA
15213

Electronle mail: has@cs.cmu.edy and haswa.gp.cs.emu.odu

Thagard takes the thcory of ecombustion as his first example of
how EC1I0 uses “explanatery coherence” to evaluate scientific
theories: in this case to choose between the competing oxygen
and phlogiston theories. A similar task was undertaken a few
ycars ago, using an entirely different computational architec-
ture, the STAHL program of Langley et al. (1987). We have here
a valuable opportunity ta compare connectionist and symbolic
solutions to problems of this kind. What tasks dua the twa
systems perfarm, respectively? What kinds of information and
assumptions have to be provided them? What lieuristics do they
use in their rcasoning? What kinds of conclusions can they
reach?

The tasks. ECHO’s task is to compare the relative compatibility
of two theorics with 2 body of evidence. STAHL’s task is to derive
a theoretical explanation of a body of evidence. Although the
tasks of ECHO and $STAHL secm very similar, we shall see that the
two programs differ drastically in terms of the infurmation that
must be provided to them by the user, and in terms of how they
use the empirical evidence to reach their conclusions. STaHL
rcquires far fewer aud weaker givens than EcHo and wakes its
own infcrences about logical relations among the propositions;
these relations must be posited by the user of ECHO.

The givens. ECHO must be supplied with sets of propositions
to (1) represent the cmpirical cvidence, (2) represent the two
scts of competing propositions, and (3) designate which proposi-
tions support or contradict which other propositions (sce
Thagard’s Talies 1 and 2). In addition, ECI10 is provided with
signed wcights for the members of (3}, whose magnitudes are
adjustalilc system parameters.

Ecno makes no use of the scmantic or svatactic structure of
any of the propositions of (1) and (2}, but only their names as
these appear in the expressions of (3). Hence, the logical con-
nections among the propositions are not inferred from them but
are posited by the user, as are the initial “strengths” of these
connections.

In contrast, STAHL is supplied only with propositions that
carrespond to ECHO's evidence propositions (1). STAIIL infers
additional propositions by using a small sct of heuristics to
reason from the evidence. The logical connections among prop-
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ositious emerge from the structure of the propositions them-
selves, without requiring the input of either explanatory or
contradictory propositions like thosc exhibited in Thagard’s
Talile 2. Morcover, STAHL lias 1o paramcters to represent
“strengths” of connectiaus.

All of sTAHL's iuputs, and its inferred propositions as well, are
(qualitative) descriptions of chemical reactions in terms of inputs
and outputs. For exanple, given the iuputs:

{reacts inpmts {chareoal air} outputs {phlogiston ash air)
{reacts inputs {calx-of-iron charcoal air} ontputs {iron ash air})

STANL infers:

{components of {charcoal} are {phlogiston ash}}
(eomrponents of {irou} are {calx-of-iron pihlogiston})

The latter two statements can be recognized as a standard form
of the phlogiston theory. When the input reactions are
changed-for example, to specify that input of red-calx-of-mer-
cury yields the outputs mercury and oxygen-sTAHL arrives at
Lavoisicr’s oxygen theory.

The heuristlcs. ECHO uscs a conncctionist scheme for assign-
ing weights to (the names of) hypotheses on the basis of weights
exogenously assigned to (the names of) evidential propositions
and linkages. Ectio has no way of determining endogenously
the logical rclations 2among propositions, whether supportive or
contradictory.

STAHL’s reasoning is based on five heuristics for inferring the
cemponents of substances from the inputs and outputs of chem-
ical reactions involving these substances {(Langley ct al. 1987,
pp- 228--34). For example, the IDENTIFY-COMPOUNDS heuristic
reads: “If A is composed of C and D, and B is composed of C and
D, and neither A contains B nor B contains A, then identify A
with B.” The other heuristies are called INFER-COMPONENTS,
REDUCE, SUBSTITUTE, and IDENTIFY-COMPONENTS. The in-
ferences sTanL makes depend on the order in which reactions
arc prescated to it; it can back off from reasoning that produces
contradictions and try alternative analyses (Langley et al. 1987,
pp. 242-45). It cannot be stressed too strongly that sTAHL does
carry out actual reasoning on the basis of heuristic inference
rules drawn from the practice of chemistry.

The conclusions. STAHL’s reasoning is limited to chemistry.
To operate in another domain, it has to be provided with a
knowledge representation and heuristic inference rules for that
domain. Ecno is quite gencral, but only because all of the
domain-specific knowledge is provided to it by the user in each
application and it is oblivious to the content of its propositions.
Morcover, STAHL invents its own hypothescs, whereas EcHO
must be provided with them. Echo therefore operates at a
much more superficial level than sTAHL.

Both sTanL and Ec1i0 will corroborate the oxygen theory of
combustion if given Lavoisier’s “facts,” and the phlogiston
theory if given sTANL’s “facts.” The difference in interpretation
depends on whether one attends to the oxygen input and carbon
dioxide output to the combustion reaction, or to the output of
flame and smoke (caloric), respectively. Contrary to popular
accounts, the advance to the better theory did not depend on
Lavoisier's quantitative measurcments, but on the growing
awareness of the participation in the reaction of the enveloping
gases, and the striking of heat and flame from the list of
“substances.” §TAHL, which uses no quantitative information,
makes the switch in interpretations quite readily {Langley et al.
1987, pp. 248-51).

Summary. A comparison of ECHO with STAHL in application to
the theory of combustion shows that the latter provides a far
deeper accaunt of the development of theory than the former,
handling endogenously many of the clements that must be
provided to ECHO as givens. STAIIL carrics out genuine reason-
ing; ECHO does not.
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Theory autonomy and future promise

Matti Sintonen
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Helsinki, 00170 Heisinki, Finland
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I much admire Thagard's way of baking a variety of virtues into
explanatory coherence. My queries and suggestions center on
the notion of promise. Take Darwin's theory. Although Darwin
thought that its greatest asset was its capacity to group and
explain classes of phenomena, few details were available. The
theory was more akin to a research program, with DH2-DH3 as
basic tools, and E1-E15 as prohlem areas (subdomains or
applications; see Thagard 1978). 1 understand that singular
evidential propositions have been left out for expository rea-
sons, but there is also an issue of principle. The choice seems to
be between a promising projeet and already articnlated rivals,
and this involves pitching possible future unification against less
unified but established breadth.

I wonder how rclo handles promise. Although the notion is
needed (sce section 4.4), FcHO looks back to eertified explanato-
ry propositions and not forward to future prospects. Eclio
inputs are tied to an instant in time, and so are the verdicts for
global coherence in the conneetionist formula (see section 4.9).
Does FcHO, unlike Thagard’s carlier account (1978) of dynamie
consilience, gesture towards instant ratiunality (see Lakatos
1970)?

This eannot be the intent, and indeed ECHO is prepared to
give a hypothesis a new hearing if new explanatory sentences arc
added (section 4.2). More dynamies can be brought in if not only
rival theories but also conseeutive versions of a theory can be
brought to trial, so that H(t') may be higher than H(t), for t' later
than t. But note that dynamie tinkering with theory presupposes
identity through change and a clear notion of theoretical
commitments.

Take theory identity first. There is of course the Darwinian
core DH2-DH3, and to ECHO's eredit, structure cmerges as ¢
result of its operation, erystallizing in high connectivity. (Note,
though, that to explain DH2, DH4 should be appended with the
cohypotheses that some variation is relevant to survival and
reproduction, and that properties are largely inherited.) How
helpful this is is hard to say, for the onus of deciding what
explains what is still on the programmer. Pl (processes of
induetion; section 7) scems helpful in tracing origins, but P1
rules hover on the same conceptual level as explanatory proposi-
tions. The principal reason for being suspicious ahout antomatic
input is that a formal-logical inference can be given explanatory
and nonexplanatory interpretations, with no formal way to
distinguish between them (see Girdenfors 1976).

What rcHo could do is acknowledge more clearly a hierarchy
with core hypotheses on top and auxiliaries under it: The former
carry the banner while the latter reach toward so far uncon-
quered subdomains. The division is visible in Table 3, but the
very idea of promise indicates that the two are on different
levels. The latter are not all at hand when the core is proposed,
and they are not as central. Actually, matters are more compli-
cated: Some auxiliaries span entire suhdomains, whereas others
are very short-lived and needed for singular explanations. A
hierarchy of levels “harmanizes™ (section 4.9) with rcHo: It
allows for layers of explanation (cf. section 6.1), avoids crnde
holism (section 10.1), and organizes constraints. For nnification
has to do with subdomains bronght nnder one umbrella, where-
as simplieity is a constraint on auxiliaries within a subdomain.

Next, a remark about pragmatic refercnee to “explanations
and hypotheses actually proposed by scientists” (section 2.3).
The text gives the impression that thesc are needed to diseredit
explanations with irrelevant cohypotheses: ECHO is discharged
of the obligation to consider P1&P2 (where P2 is irrelevant),
because it doesn’t surface as a serious option. But FCHO does
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better than this: Irrelevant premises decrease eoherence, and
therefore overt pragmatic reference here is otiose. Prineiples
2(b)—(c) explain why scientists actnally do not flirt with irrele-
vant cohypotheses (and why explanation is more restrictive than
implication). But this may he the intended reading anyway.

With these pragmatic hurdles hehind, there is the tough one
of theory elaim ahead. Choosing between networks presnpposes
shared data. But theories have some autonomy in selecting the
territories they claim and in slieing them into subdomains. This
prohlem should worry whoever feeds xci10, for it comspires
with the problem of promise, threatening to let antonomy run
rampant. Actual theorics often promise to carry you throngh
thick and thin, but have relatively scant justification in terms of
detailed results. Moreover, the secured resnlts may concentrate
on a few subdomains, and the elaim of a theory to handle others
may be frustrated, either hecanse the main hypotheses are
unsuitable or because carrying out the detailed program flouts
other constraints. Thus prospected unification or simplicity may
crumble on closer inspeetion.

Owe reaction is to downplay tronbles, as in cognitive disso-
nance elsewhere. Eciio acknowledges that not all data are
treated eqnally. Theory autonomy explains why data excitation
values differ, suggesting another interpretation for numerieal
parameters in explanatory statements like (EXPLAIN (111)
EL9). A weakened link between H1 and E1 could reflect cither
El's duhious cpistemie status (Thagard’s proposal) or, eqnally
well, its dissimilarity with improblematic exemplars within a
class that H1 should address. ES in Figure 8 could be epis-
ternically impeceable but deactivated beeanse it is marginal to
H1's concerns.

As toautonomy, therc is noway to force a problem on a theory
unless it commits itself to a set of domains and paradigm
explananda in these domains. Commitment to main hypotheses
and a set of doinains would thus cxplicate relevance and explain
how data, analogy, and simplicity can have differing weights.
Thagard abserves (section 4. 10) that such contextnal features are
learned from established coworkers in the field. The same
sociopsyehological peer pressure sets limits to toleranee and
skeptieism.

Note, then, that a project is a gamble. Traditional decision-
making models acknowledge this through expected cagnitive
value. True, precise prohabilities are not easy to come by, hut
FCHO could add a dynamic feather to its hat hy allotting ex-
pected coherence a role, however modest.

Let me conclude with a note on broader vistas. Thagard
rcjects the normative/descriptive dichotomy, yet (rightly) in-
sists on the cognitive natire of explanatory virtues (Thagard &
Nowak 1988). But consider the legal examples, in which the
proscention and defense advocate incompatihle ways of explain-
ing the evidence. Clearly, more than “hanmany” or truth is at
stake. A juror may think that “guilty of first-degree murder”
maximizes “harmany,” but he may think twice before speaking
out. Thagard surmises that jurors hesitate hecause hypotheses
of innocence receive special activation (or require a high toler-
ance level). 1 agree, and snggest a reason: apart from cognitive
considerations, jnrors may (withont, perhaps, being aware of
this) keep an eye on the practical consequences that follow if the
judge acts on a chosen cognitive verdict (as he nsually must).
The most “harmanions” option may have dramatic consc-
quences for the defendant, which is why the moral and legal
principle of safegnarding the innocent exists. 1 suggest that this
principle hrings in a noncognitive constraint that shonld operate
on what one says, not on what onc thinks. Thagard's examples
suggest that being established “beyond reasonable doubt” runs
these two aspects together.




Psychology, or sociology of science?

N. E. Wetherick
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My probiem with Thagard’s target article is that it purports to
present a connectionist theory of “the acceptance and rejection
of scientific hypothcses” as an individual psychological (or per-
haps neurophysiological) process, but cites only examples in-
volving the acceptance or rejection of hypotheses by a commu-
nity of scientists—a sociological process. It is not obvious to me
that the samnc theory could apply to individual psychological
processes as well as to sociological ones.

Thagard’s cxamples come from the sociology of scicnce. The
phiogiston controversy seems to have been settled over what is 2
very short period if onc considers the slowness of scientifie
communication at the time. It is natural to assume from ap-
pearances that something is lost by substances when they burn;
smoke is given off, along with soot particles. But when a
controlled experiment is done, it turns out that weight is gained
by the burned substance cxactly equivalent to the weight lost by
the air in which it is burned. Something passes from the air to
the substance, but phlogiston theory predicts the opposite,
Though Lamarck, for example, and Goethe never ceased to
advocate a “qualitative” science concerned with “the very
nature” of things, the period was one in which the idea of a
“quantitative” seience was gaining ground prior to its triumph in
the nineteenth century; that movement of thought was suffi-
cient to ensure a preference for theorics consistent with the
quantitative evidence. Ecrio picks up this effect (in which
variations between individual scientists in the perceived rele-
vance of different parts of the argument cancel out over the
whole).

The controversy over Darwin’s argument for natural selection
mirrors the psychological process more closely--ereationists are
still active among us, but not phlogiston theorists, If someone
accepts that species were ereated by God because that is what he
tells us in the Bible, then no amount of geologieal or biological
cvidence will oblige him to believe in natural selection! God
nay have incorporated evidence suggesting natural selection
{over a period of millions of years) when he created the world in
4004 B.C., just to test our faith in his word. This arguinent was
scriously advanced in the ninetcenth eentury, but in the nine-
tecnth century there was also a movement of thought favouring
arguments that did not depend on revelation but made a rational
case for alternative naturalistic explanations of phenomena.
Ecno picks up this cffect too.

Thagard’s examples evaluate hypothescs against evidence as
if in a mind free of prejudice and preconceptions. No real
individual mind qualifies, and I suspect that even the “mind” of
the scientific community only appears to qualify because in the
examples chosen the “true” hypothesis was the one consistent
with a movement of thought that was, in any case, beginning to
be accepted on much more gencral grounds. If Thagard mod-
clled the mind of the scientific community of the 1920s on the
subject of Polanyi’s theory of the adsorption of gases on the
surface of a solid, he would show that Polanyi was wrong, though
in fact Polanyi was right. (Langmuir got the Nobel prize for
being wrong!) At that time, the “movement of thought” was
against the type of theory advocated by Polanyi (Polanyi 1963).

Thagard may arguc that ECHO can perfectly weil model a
prejudiced mind, and so it can, but I question the value of a
connectionist model of this particular type of mental activity.
Perceived explanatory coherence is always determined by con-
scious symbolic processing, usually accompanied by diseussion
with other perceivers interested in the same problem--which
would be impossible without symbolic processes. This is recog-
nised in ECHO by the fact that the degree of relevance of
evidence to hypotheses (and of analogy between hypotheses)

.
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has to be input by higher (symbolic?) mental processes. When
we as individuals consider alternative hypotheses as explana-
tions of a given set of phenomena, we may “err” (as shown
above) because we attach exceptional weight to a particular
hypothesis for reasons extraneous to science. Or we may be
unaware of some piece of evidence that, we agree as soon as we
hear of it, determines the issue in favour of one of the hypoth-
eses. Or we inay temporarily have forgotten some such piece of
cvidence and be willing to change our opinion as soon as we are
reminded of it. In any case, symbolic processing will be in-
volved, and Thagard’s model contains no hint as to how the
transition to this is to be achieved; it can account for no more
than, for example, “incubation” in problem solving.

I conclude that nothing is to be gained at present by con-
structing a connectionist account of a psychological process that
must involve symbolic processes. Thagard’s model could be an
account of the sociological process by which a community of
scientists comes to adopt a common view on some theoretical
issue, but his referenees to “exeitation” and “inhibition” would
then be entirely metaphorical, and that dees not seem to be
what he intended.

Testing ecHo on historical data

Jan M. Zytkow™

Department of Computer Science, George Mason University, Fairfax, VA
22030-4444

Electronic mall: zytkow@gmuvas.gmu.edu

A number of interesting phenomena related to the choice
between competing theorics were reproduced in ECHO on toy
problems in section 4 of Thagard’s target article. This makes
ECHO an interesting framework for further analysis. Such a
limited validation is usually an easy first step for any framework,
however. The four cases examined in sections 5 and 6 were
selected by Thagard to play the role of much more substantial
examples. How convincing are they? I will concentrate on the
first one, representing Lavoisicr’s 1783 eritique of phiogiston, I
will argue that this example says little zbout how one of the
competing theories is superseded by the other. Then I will
discuss the possibility of better tests.

EcHo applled to Lavoisler’s arguments against phlogiston.
Consider the oxygen/phlogiston example. Does EC130 answer
why the oxygen theory of combustion superseded the phio-
giston theory? I do not think so. Running on data that Thagard
reconstructed from Lavoisier's 1783 paper (Lavoisier 1862),
ECHO concludes that the phlogiston theory is less eoherent than
the oxygen theory. This supports Thagard’s descriptive claim
about Ecrio by confirming Lavoisier's conclusion bhased on
Lavoisier's data. However, in order to understand the shift from
the phlogiston theory to the oxygen theory, it is not as important
to understand why Lavoisier became convinced that the phio-
giston theory is inferior as it is to understand why the phiogis-
tians gave up. To understand this, we must take the strongest,
not the weakest, accounts of their theory. In the example
considered by Thagard, Lavoisicr criticizes some of the old
phlogistic claims made prior to the discovery of oxygen. In the
carly 1780s, phlogiston theory, improved by Cavendish, Kir-
wan, and Priestley, could explain evidence E3, E4, E5, E6, and
E7 in Thagard’s Table I (Musgrave 1976, pp. 193-94; Part-
ington 1962, p. 255; Zytkow & Lewenstam 1982, pp. 45-46),
contrary to Lavoisier’s claim.

According to the improved phlogiston theory, during calcina-
tion the phlogiston disengages from metal, forming a compound
with dephlogisticated air (oxygen). That compound in turn
combines with the calx that remains from metal. This scheina,
extended to other substances, was able to explain the decom-
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position of calx of mercury into mercury and oxygen, and solved
the nagging anomaly of the increase in weight during calcina-
tion.

In selecting Lavoisiers 1783 paper, Thagard considers a
phlogiston theory no longer entertained by the leading phlogis-
tians—hence it is not strange that they reinained unconvinced by
Lavoisier's criticism. So even if Ecno demonstrates the superi-
ority of Lavoisier's theory, the relevance of the example does not
go beyond a description of the particular reasoning of a particu-
lar seientist against a dead or imaginary opponent. It might have
had an impact only on some outsiders in chemistry, as it has had
on some historians.

The input given to ECHo, listed in Tahles 1 and 2., raises
further doubts. Why is OH4 — “Oxygen has weight” - treated as
a hypothesis in Table L, not as evidence? Examining Table 2,1
do not see why some hypotheses are relevant, nor why some
evidence is explained. For instance, why is E1 explained by
hypotheses OHL, OH2, and OH3? Neither hypothesis tells
anything about any substance being given off, so how can we
conclude that heat and light are given off? Ido not see why OH1
is relevant to the explanation of E3: Thagard treats his explana-
tory relation as an undefined primitive. Because similar doubts
apply to most entries in Table 2 and to the input for the
remaining three examples, they suggest a more explicit treat-
ment of explanation. Thagard himself inentions the input prepa-
ration problem in seetion 7. But his problem has been solvedtoa
large extent elsewhere. The generation of hypotheses and ex-
planatory links can be automated by a combination of two
existing computer discovery systems, STAIIL and GLAUBER,
developed several years ago (Langley et al. 1983, 1987, Chap-
ters 6 and 7, Rose & Langley 1986; Zytkow & Simon 1986).
Jointly, these systems can construct both the hypotheses in
Table I and explanations simiar to those in Table 2 by using the
evidence in Table I as well as some additional olservations,
StanL and GLAUBER have been tested on many historical
episodes. Their simple and explicit opcrators allow for detailed
examination of the explanatory process.

Better tests for ecmo. Can ECHO describe the shift from the
phlogistic view to Lavoisier's view? To test this problemn we
need cases of phlogistians, who, knowing both theories, decide
in favor of Lavoisier. To pass the test, ECl10 should be able not
only to mimic this performance by selecting a stable state
corresponding to the oxygen theory, butalso demonstrate thata
particular, historieally valid input eaused the shift from the
previously held stable state corresponding to the phlogistic
theory. Unfortunately, little is known about these episodes. If
they were available, however, I would not expect them to
confirm Thagard's conjecture about the descriptive capahility of
EcHO. Leading phlogistians conducted very ineisive analyses of
Lavoisier’s claims and produeed excellent aecounts of his theo-
ry, but they did not feel that their theories were less eoherent
{Cavendish 1785; Kirwan 1789} In my view, a plausible expla-
nation of the paradigm shift in chemistry at the end of eigh-
teenth century cannot be explained by ahstracting from the
contents of both theories.

From the descriptive point of view, validating EC110 requires
many historieal episodes as data points. One can find many other
candidates for test cases which are perhaps not as spectacular as
the transition from the phlogiston theory to the oxygen theory,
but which are much better documented. Leading theories of
eighteenth-century chemistry underwent many changes follow-
ing the discovery of hydrogen, oxygen, decomposition of water,
and so forth. Because each diseovery led to different responses
by different chemists as described in their writings, many test
cases are readily available.

Conclusions., Ecuo provides an interesting, uniform,
domain-independent mechanism for coherence testing. It is
poorly supported, however, and the impaet of this work is
unelear. In each domain of application, ECHO should be tested
on a number of carefully selected cases. In the domain of
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cighteenth-century chenistry, ECno may be coupled with
sTanL and GLAUBER, becanse they are able to generate most of
ECHO's input.

NOTE
*On leave from Wichita State University and the University of
Warsaw.
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The commentators have raised nunerous important
questions about my account of explanatory coherence. In
reply, I will first address the most general issues about the
kind of approach to understanding inference I have taken,
answering queries about the philosophical, psychologi-
cal, and computational nature of this project and about
the role that connectionist ideas play. I will then address
theoretical questions about explanation, simplicity, anal-
ogy, probability, and conceptual change, and will subse-
quently look at problems concerning the ECHO model.
(Adopting Reggia’s acronyin, 1 distinguish between TEC,
the theory of explanatory coherence expressed in the
seven principles in section 2.2 of the target article, and
ECHO, the computational implementation of those princi-
ples.) Finally, I will discuss problems pertaining to the
adequacy of TEC and ECHO for characterizing human
thinking.

1. The general approach

1.1. Philosophy, psychology, and artificlal intelligence.
TEC and ECHO are intended simultaneously to contribute
to philosophy of science, cognitive psychology, and ar-
tificial intelligence (AI). Dietrich seems puzzled about
whether TEC is a theory in the philosophy of science or a
psychological theory. My intention is for it to be both, and
I acknowledge the possibility that it could fail to be
adequate in both respects. That he sees a tension be-
tween these two interpretations is not surprising given
the logical positivist tradition in the philosophy of science
that tried to separate logic from psychology. But postposi-
tivist philosophy of science should be psychologistic, not
in the strong sense that supposes that however scientists
think is rational, but in the weak sense that judgments of
rationality take actual thought processes as their starting
points. The investigation of those processes then be-
comes part of the philosophy of science. The best current
method for psychological theorizing comes from com-
putational modeling. From this perspective, philosophy
becomes part of cognitive science; it should not seem odd
to find a computer program described as part of a theory
in the philosophy of science. The point of ECHO is to show
that a much more detailed and applicable account can be
provided of explanatory coherence and theory evaluation




Table 1. The format of this response

1. The general approach
L. 1. Philosophy, psychology, and artificial intelligence
Dietrich, Wetherick
1.2, Connectionisin
Dietrich, Lycan, Cheng & Keane, Wetherick, Giere,
Levine
2. Theoretical issucs
2.1. Explanation and hypothesis evaluation
Achinstein, O'Rorke, Sintonen, Josephson
2.2, Simplicity
Reggia
2.3. Aualogy
McCauley, Gabrys & Lesgold, Hobhs
2.4. Conceptual change
Ciere, Mangan & Palmer
2.5. Logic and probability
Feldman, Cohen, Papineau, Lycan, Dawes, Bereiter
& Scardamalia
3. Problems with the Ecro model
McCauley, Mangan & Palmer, Dietrich, Zyvtkow, McDer-
mott, Hobbs, Bereiter & Scardamalia, Simou, Zytkow
4. Psychological adequacy
Klayman & Hogarth, Earle, Cheng & Keane, Chi,
Bereiter & Scardamalia, Read & Miller

Note: The commentaries discussed in each category are listed
in order of appearance.

than philosophers have given so far. Computational phi-
losophy of science (Thagard 1988a) fits within the center
of the interdisciplinary field of cognitive science, at-
tempting an integrated assault on problems common to
philosophy, psychology, and Al. Dietrich’s suggestion
that ECHO is in the logical positivist tradition ignores the
fact that TEC and ECHO are neither logical (in the narrow
sense) nor positivist, They are not positivist because the
emphasis is on high-level theories, not on observation,
and data can be rejected; and the principles of explanato-
ry coherence go well beyond formal logic.

Perhaps it would be useful to coin a new term to
describe an approach that is intended ta be both descrip-
tive and prescriptive. I shall say that a model is biscriptive
i it describes how people make inferences in accord with
the best practices compatible with their cognitive capaci-
ties. Unlike a purely prescriptive approach, a biscriptive
approach does not offer a theory of God's cognitive
performance, but is intimately related to actual human
performance. Unlike a purely descriptive approach,
biscriptive models can be used to criticize and imprave
human performance.

Whereas my project is intended to be philosophical,
psychological, and computational, Wetherick sees TEC
and ECHO as sociological on the grounds that my examples
involve acceptance or rejection by a community of scien-
tists. 1 was explicitly modeling Lavoisier and Darwin,
however, not communities of chemists or biologists. My
examples come from the history of science, not its so-
ciology. Nor do I pretend to model minds free of preju-
dice and preconceptions. As described in section 10.4 of
the target article, ECHO does display a degree of conser-
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vatism in how it deals with new evidence, and other sorts
of preconceptions could be modeled using the mecha-
nisms for analogy. Wetherick simply asserts that explana-
tory coherence is always determined by conscious sym-
bolic processing, but people often appreciate the co-
herence of a new poinut of view only after they have
stopped consciously arguing about it.

1.2. Connectionism. The computational side of my ac-
count of explanatory coherence draws heavily on connec-
tionist ideas. Yet Dietrich and others see ECHO as almost
peripheral to the theory, TEC. There are two responses to
this, one biographical and the other methodological.
Although the organization of the target article suggests
that TEC came first and ECcHO followed, I in fact got the
idea for EcHO by analogy with the acMmE program for
analogical inapping that Keith Holyoak and I were devel-
oping (Halyoak & Thagard, in press). Thinking in terms of
connectionist algorithms for simultaneously satisfying
multiple constraints had enabled us to reconceptualize
the problem of how the components of two analogs can be
put in correspondence with each other, and it struck me
that a similar approach might work for the problem of
hypothesis evaluation. General ideas about inference to
the best explanation and parallel constraint satisfaction
led ta ecuo, which led to TEc, and EcHO and TEC
thereafter evolved together. As usual in cognitive sci-
ence, there was considerable interplay of theory and
model, with ideas about how to improve ECHO suggesting
improvements in TEC and vice versa. The connectionist
model thus played a crucial role in theory development,
but it has also been instrumental in evaluating the theory.
A typical theory in the philosophy of science is defended
with a brief discussion of a couple of examples. EcHo
makes possible and necessary the development of very
detailed simulations that simultaneously lend credence to
claims about the scope of ECHO and the scope of TEC. I
therefore see connectionist ideas about parallel constraint
satisfaction as integral to both the generation and the
evaluation of a theory of explanatory coherence.

Lycan claims that my emphasis on connectionism is
misleading, for he seems to consider distributed repre-
sentatians and neurological aspirations central to connec-
tionism. Yet the more careful connectionists have made it
clear that the similarity between the brain and current
connectionist models, including distributed ones, is su-
perficial at best. Rather than viewing connectionism as a
new “paradigm” that obviates traditional AL I see con-
nectionist ideas as a very useful supplement to traditional
ideas in Al. A convincing argument for the redundancy of
the connectionist approach would require the develop-
ment and general application of a nonconnectionist ver-
sion of ECHO. I have produced the rule-based version of
ECHO described in section 7 of the target article, and it has
the conjectured limitations. Although it duplicates
ECHO's performance in quite a few cases, there are
numerous other cases where it lacks ECHO’s subtlety and
generates different, less appropriate, conclusions.

I agree with Cheng & Keane about the importance of
developing a psychological account of explanation, but I
want to challenge their dichotomy between “conven-
tional symbolic” models and connectionist ones. Wether-
ick also erroneously contrasts my account of explanatory
coherence with symbolic approaches. Both proponents
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and critics of connectionism have exaggerated the dif-
ference between connectionist and traditional ap-
proaches. For one thing, even connectionist models with
distributed representations have a substantial symbolic
component involved in their inputs and outputs. Both in
this work on explanatory coherence and in research on
analogy (Holyoak & Thagard, in press), 1 favor a hybrid
approach in which symbolic reasoning is used to create a
network and connectionist algorithms are used to do
parallel constraint satisfaction. There is nothing “subsym-
bolic” about this approach at all. 1 also like the way that
distributed representations work, but doubt that the
symbolic/subsymbolic distinction is useful there either.
What is needed in cognitive science today is work that
integrates many different approaches.

Whereas several commentators have upbraided me for
being too connectionist, other readers will undoubtedly
think that I have not been connectionist enough, relying
too heavily on symbolic input and not using distributed
representations. I have no doubt that the understanding
of cognitive processes will require the nonlinguistic rep-
resentational mechanisms and judgmental strategies that
Giere advocates. 1 conjecture, however, that explanation
and theory evaluation are heavily influenced by our
ability to use language, so that linguistic representations
of varying degrees of complexity will be central to under-
standing the highly verbal practices of scientists.

Levine is of course right that nothing in the ECHO
model addresses the question of how to modify a theory or
to synthesize parts of two conflicting theories. These are
important issues for future research. Lalso very much like
his challenge to connectionist and neural theories to
indicate how higher-order processes of explanation and
coherence might emerge from lower-order processes.
Some extreme proponents of the neurophysiological ap-
proach might be tempted to argue that the coherence
relations I discuss are mere epiphenomena and will prove
superfluous once neuroscience really gets rolling. 1 think
such proponents are roughly in the position of a fifteenth-
century scientist trying to practice molecular hiology
before much was known about whole organisms. My
recommended strategy for cognitive science is to have
many people working simultaneously at many levels,
with researchers at each level keeping appreciative eyes
open for relevant work at the other levels. Section 8.1 of
the target article listed eight different approaches, all of
which I think are worth pursuing. My conjecture is that
one of the major sources of scientific progress in the near
future will come from the interpenetration of approaches
— for example between neuroscience and experimental
cognitive psychology, and between connectionist models
and traditional Al models. Fortunately, this seems to be
exactly what is happening, despite the jeremiads of some
researchers who insist that only their favorite approach is
worthwhile.

2. Theoretical issues

2.1. Explanation and hypothesls evaluation. Now let us
turn to issues central to TEG, the theory of explanatory
coherence. Achinstein contends that I need to show some
intrinsic connection between explanation and accept-
ability. He suggests that 1 would not want to say that the
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Book of Genesis explains the origin of the universe, in a
sense of “explains” that has any connection with accept-
ability. On the contrary, I see no difficulty in saying that
Genesis explains the origin of the universe and would
even allow that there was a time when it (and equivalent
theological views) provided the best available explanation
of the universe. The reason that the Genesis account is no
longer acceptable is that we have accumulated masses of
data about the development of the universe that are
explained much more comprehensively and simply by
new theories such as the Big Bang theory. We would
need a connection between explanation and acceptability
only if we were arguing directly from “H explains the
evidence” to “H is acceptable,” but no one advocates
that. Instead, we ought to make sure that before H is
accepted we have sought alternative explanatory hypoth-
eses and done a comparative explanation. The inference
from “H is the best explanation of the evidence” to “H is
acceptable” does not require any special relation between
explanation and acceptability. The use of inference to the
best explanation can be justified on the basis of my
methodology for going from the descriptive to the nor-
mative (Thagard 1988a, Chap. 8).

I have regrettably not offered a theory of explanation,
but I do see glimmers of what such a theory might look
like. It would not resemble the attempts by philosophers
to give an analysis of the concept of explanation, that is, to
give a set of necessary and sufficient conditions for some-
thing being an explanation. Concepts in science and
ordinary life are rarely susceptible to such definitions. At
best, we can hope to describe features characteristic of
typical explanations. Although not all explanations are
deductive, many are at least quasideductive in that they
place what is to be explained in the context of general
laws, doing at least a rough derivation. Many are causal,
in that they invoke causal mechanisms as part of the
derivation of what is to be explained. Many are oriented
toward answering particular questions that have been
posed. Many involve fitting schemas to a situation to
generate a contextual understanding of events. A theory
of explanation should integrate these quasideductive,
causal, question-oriented, and schematic components to
account for the explanatory practices of scientists. The
theory would be computational in that it would be precise
enough to be implemented in a computer program, but it
would be clearly distinguished from the program that
implements it. Finally, the theory of explanation would
make contact with experimental studies of how people
generate and use explanations. A cognitive theory of
explanation would be a substantial contribution to philos-
ophy, psychology, and Al

O'Rorke accurately characterizes aspects of the scien-
tific reasoning process that TEC and ECHO do not address.
He suggests that it is necessary to introduce evaluation
into the construction process in order to reduce the
number of explanations generated. Implicitly, this is true
of the abduction mechanism in the system P1{“Process of
Induction,” Thagard 1988a, Chap. 4), because a hypoth-
esis has to explain at least one fact for it to be generated. It
will be interesting to see what other coustraints are
embodied in O’'Rorke’s programs and to try to integrate
explanatory coherence considerations with programs that
make decisions about when to collect more information.
O’Rorke also suggests that an agent’s goals and priorities




play important roles in evaluation. Now I can certainly
see the relevance of goals and priorities for the generation
of hypotheses. Holland et al. (1986) emphasized that
induction should be constrained by problem -solving con-
texts. But the question of whether to accept a hypothesis
is separable from the question of where to focus attention
and the decisions that may be based on the hypothesis
once it is accepted. Eventually T plan to develop a
modified version of ECHO, MOTIV-ECHO, that is capable of
conflating hypothesis evaluation and decision making,
which is also naturally understood to be a parallel
constraint-satisfaction process. Motivated ECHO will
reach conclusions on the basis of how well beliefs satisfy
its goals, as well as on the basis of how much explanatory
coherence they have (cf. Kunda 1987; Thagard & Kunda
1987). But Kunda’s data, although they support the view
that people make motivated inferences, also suggest that
the way this works is much more subtle than merely
believing what one wants to believe. Motivation affects
memory search for evidence that is then selectively
applied in support of desired conclusions. People do not
just believe what they want, although they attempt to find
evidence for what they want to believe.

Sintonen raises the important question of whether
ECHO can deal with promise, suggesting that scientists
adopt a theory in part because they think it has the
potential for growth. Undoubtedly this occurs. I am sure
that the reason so many graduate students are working on
connectionist models, in some cases to the chagrin of
their supervisors, is partly that there are many open
questions to be investigated; in contrast, many tech-
niques that have been very important for AL such as rule-
based systems, have already been well explored. I think,
however, that we can distinguish the decision to work on
a project from the judgment, based on explanatory co-
herence, that the theory underlying the project is the
best one available. The category of “promise” blurs into
wishful thinking, opening up the possibility that scientists
believe a theory because it has the potential to make them
successful rather than because of its coherence. MoTIV-
ECHO might model such inferences. Similarly, Sintonen
suggests that jurors take into account the consequences of
their decisions for the punishment of the accused, not just
the explanatory coherence of the competing accounts.
For scientists, however, I think it is more common to
reverse this inference and think that a theory will make
them successful because of its explanatory coherence.
Sintonen is not suggesting that ECHO be broadened to a
fully motivated EcHo, only that a component of “ex-
pected coherence” be added. If there were some reason-
able way to assess the expectation, this might be appro-
priate, but I do not see any natural way to add this
constraint.

Sintonen has a legitimate concern about the identity
criteria of theories and suggests that I distinguish more
carefully between core hypotheses and auxiliary hypoth-
eses. I would prefer to have that distinction emerge from
the model: Core hypotheses have many explanatory con-
nections to evidence and other hypotheses, whereas the
auxiliary hypotheses are very sparsely connected. I grant
Sintonen’s claim that theories have some autonomy in
selecting the territories they claim, but I believe that
once two theories have territories that overlap, each of
them should pay attention to the territory of the other.
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That does not mean that the best explanation has to
explain everything the other theory does, only that it
normally tries. The system PI incorporates an algorithm
for accumulating alternative hypotheses and relevant
evidence (Thagard 1988a, p. 207).

Josephson challenges TEC’s assumption, derived from
Harman (1973), that a hypothesis becomes more accept-
able if it is explained by a higher-level hypothesis. Yet in
every domain in which explanatory inference is used,
higher-level explanations can add to the acceptability of a
hypothesis. Darwin, for example, thought that the fact
that evolution was explained by natural selection was a
crucial part of the evidence for evolution. In murder
trials, questions of motive play a major role, because we
naturally want an explanation of why the suspect commit-
ted the crime as well as evidence that is explained by the
hypothesis that the suspect did it. In Josephson's own
favorite domain, medical diagnosis, I expect that doctors
normally find the hypothesis that cirrhosis of the liver is
the cause of a patient’s symptoms more convincing if they
can also explain why the patient got cirrhosis from being a
heavy drinker. ECHO shows that incorporating this ele-
ment of explanatory coherence into a computational
model does not create any intractable problems. Unlike
Harman, however, I do not subsume enumerative induc-
tion under inference to the best explanation, but treat it
as an independent form of inference (Holland et al. 1986,
Chap. 8; Thagard 1988a). Contrary to Josephson’s sug-
gestions, nothing in TEC involves a position on the philo-
sophical question of the symmetry of explanation and
prediction.

2.2. Simplicity. The important parsimonious covering the-
ory suggested by Reggia provides a serious alternative to
TEC, although TEC’s notion of simplicity is not as simple as
Reggia suggests. He interprets TEC's Principle 2(c) (sec-
tion 2.2) as a principle of minimal cardinality: Explanatory
hypotheses with the smallest number of hypothesized
components are preferable. But 2{c) does not have this
consequence. Consider a theory, T1, consisting of three
hypotheses, H1, H2, and H3. The alternative theory, T2,
consists of H4, H5, H6, and H7, where H1 and H4 are
contradictory. Now suppose that there are two pieces of
evidence, E1 and E2, and that H1 and H2 explain E1, and
H1 and H3 explain E2. On the competing side, suppose
that H4 explains E1, and H4, H5, and H6 explain E2, and
moreover that H7 explains H4, H5, and H6. When EcHO
is run on this example, the hypotheses in T2 are all
accepted and H1 is rejected, even though T2 has more
hypotheses than T1. An unlimited number of similar
examples would show that what matters is not just the
sheer number of hypotheses but also their configuration.
That being said, I have much sympathy for Reggia’s
general approach, and would be ready to use Bayesian
methods when frequencies and prior probabilities are
available. In the examples to which ECHO has been
applied, they generally are not. The closest one could
come is perhaps to use analogies to indicate prior plau-
sibilities, favoring hypotheses that figure in explanations
that are similar to ones already used. In the medical and
engineering domains where Reggia’s theory has been
successful, probabilities based on frequencies are more
obtainable and sensible than in the wide-open scientific
and legal domains to which £cHO has been applied.
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2.3. Analogy. Principle 3 of TEC is challenged by Me-
Cauley on the grounds that theories caunot be evaluated
on the basis of analogies, because what counts as an
analogy is partly determined by theory. Although grant-
ing that theories influence analogies, 1 think that the
process of analogy recognition is sufficiently independent
of theorizing to leave Principle 3 intact. Our theory of
analogical mapping (Holyoak & Thagard, in press) shows
how structural, semantic, and pragmatic constraints af-
fect how the components of two analogs can be placed in
correspondence with each other. Defenders of different
theories may well have different goals in the use of an
analogy, and this will affect their use of the analogy; our
theory accommodates this in its admission of a pragmatic
constraint. But that is only one constraint ainong many,
and if the structural (syntactic) and semantic {meaning-
related) aspects of the two analogs are similar, as I thiuk
they usually are, then proponents of different views caun
reach some agreement about the nature of the analogy.
McCauley is of course right that the analogy between
artificial and natural selection did not in itself move the
nineteenth-century creationist, but it was only one com-
ponent of the whole picture. Darwin had to argue that
species were more like breeds than creationists had
allowed, and this was very controversial. But creationists
could nevertheless appreciate the structure of the analo-
gy that said that having nature select and produce species
was something like having breeders select and produce
breeds. Similarly, although I have challenged the general
usefulness of the analogy between biological evolution
and the growth of scientific knowledge (Thagard 1988a,
Chap. 6), 1 have no difficulty in seeing the relations that
constitute the analogy.

Gabrys & Lesgold rightly point out that jury reasoning,
such as in the cases modeled by EcHoO, is very different
from jurisprudential reasoning, in which judges and law-
yers apply the law. T am in complete agreement that case-
based (analogical) reasoning is important in law, but I do
not understand why these commentators view this as
being incompatible with constraint-satisfaction models. If
our account is correct (Holyoak & Thagard, in press), then
analogical reasoning, which subsumes case-based reason-
ing restricted to a single domain, is very much a mattcr of
simultaneous satisfaction of structural, semantic, and
pragmatic constraints. Just as ECHO uses connectionist
algorithms to integrate various considerations for evaluat-
ing hypotheses, the analogy program ACME uses such
algorithms to integrate constraints about how analogs can
be put into correspondence with each other. ACME is of
course different from ECHO in the way it constructs
constraint networks, but it is similar in the way it uses
relaxation techniques to calculate how to satisfy con-
straints.

Hobbs argues that the existence of an analogy enhances
a theory’s explanatory power only when it rests on a
deeper abstract principle. Similarly, some Al researchers
have claimed that analogies always involve some kind of
abstraction. In the view of Holyoak and Thagard (in
press), however, analogies can be recognized indepen-
dent of such abstract principles; in fact, it is often the
recognition of the analogy that prompts the formation of
the abstract principle. Once the relevance of analogies A1
and A2 has been noticed, it becomes possible to abstract
from them a schema that incorporates the relevant fea-
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tures of botli (Holland et al. 1986, Chap. 10). In the
Darwin case, for examnple, T suspect that the abstraction
“Selection can result in new varicties of living beings”
cane about only after Darwin’s theory and the analogy he
had cited were accepted. So analogy remains indepen-
dent of simplicity and cousilience (explanatory breadth).

2.4. Conceptual change. TEC is intended to play a role in
accounting for conceptual change in science. But Giere
contcuds that I have given a modcl of scientists” argu-
inents, not of their reasoning. To be sure, my historical
cases are lased on published argunients, not on protocols
collected from scientists in the heat of reasoning. In
contrast, Ranney and Thagard (1988) report ECHO
analyses based ou subjects’ verbal reports of the stages of
their reasoning. Whether similar techniques could be
used with practicing scientists to generate evideuce con-
cerning scientists’ use of ECHO-style considerations is an
open empirical question. 1 hope the experiments are
done with practicing scientists. 1 like the fact that what
might appear to be a philosophical disagreement between
Giere and me about the applicability of TEC is amenable
to empirical investigation.

Giere questions whether TEC can explain the transition
from the phlogiston to the oxygen theory, because we
would expect proponents of the earlier theory simply to
mount their own explanations. This is undoubtedly what
happens initially, but in the course of argument scientists
start to understand the evidence and explanatory rela-
tions of their opponents, so that they acquire an enhanced
picture of the explanatory relations. Over time (it typ-
ically took a couple of years in the chemical revolution),
the expanded explanatory network can lead to the adop-
tion of the new theory. I therefore do not want to retreat
to the purely normative stance that Gicre suggests. Thave
no objection to Giere’s proposal that we look at the full
range of representational meghanisms and judgmental
strategies that operate in individual cognitive agents, but
I contend that psychological experiments may show ex-
planatory coherence considerations to be paramount.
TEC is thus intended to be much more psychological and
no less normative than inductive logics.

Mangan & Palmer find the philosophy of science
implicit in TEC insufficiently up to date, assailing its
Kantian flavor in contrast to the more relativist views of
Kuhn and Feyerabend. But the principles of TEC are not
claimed to be synthetic a priori like Kant’s fundamental
principles. Elsewhere (Thagard 1988a, Chap. 7)1 offer an
account of how to develop normative principles from
descriptive considerations; I would want that account to
apply to TEC as well. The main support for TEC comes
from its application to numerous cases in the history of
science, not from some a priori deduction. Meth-
odological theories have to cohere with inferential prac-
tice, although they can do this in part by invoking psycho-
logical and sociological background knowledge to explain
deviations fromn the principles. Kuhn and Feyerabend
overestimate, I would argue, the degree of variability of
methodological principles in the history of science.

The real issue between TEC and the Kuhn/Feyerabend
view of scientific change concerns the degree to which
principles of explanatory coherence change as part of
“paradigm shifts.” Mangan & Palmer’s uncritical accep-
tance of Kuhnian dogmas presupposes that Kuhn got the




history of science right, successfully using it to refute his
positivist predecessors. But in many respects, Kuhn's
description of the nature and nagnitude of scientific
change is not historically accurate (Donovan et al. 1988,
Thagard, in press b). TEC would indeed be historically
inadequate if it turned out that the shift fromn one major
theory to another introduced new principles of explanato-
ry coherence and rejected old ones, but the extent to
which this has occurred has been exaggerated. To take
one examnple, Mangan & Paliner attribute to ine the view
that the use of analogy "became” an important explanato-
ry device for Darwin. But Darwin certainly did not
originate it. In fact, we find analogy prominent in the
writings {(much admired by Darwin) of William Paley, one
of the leading scientific creationists. Analogy also figured
in arguments used for the wave theory of light by Huy-
gens and Fresnel. So it was not the case that one aspect of
the Darwinian revolution was the introduction of a new
principle of explanatory coherence.

Although I reject for philosophical and historical rea-
sons the drift of Mangan & Palmer’s approach, I an
intrigued by the architecture they propose for using
gating units to modify the impact of explanations and
analogies. I hope they will explore the kind of structure
they describe for adjusting the impact of explanation,
simplicity, and analogy, possibly learning it from feed-
back. I would argue, however, that understanding the
major kinds of conceptual change that take place in
scientific revolutions should pay more attention to ques-
tions of conceptual structure (Thagard, in press b;
Thagard & Nowak, in press) than to questions of change in
principles of explanatory coherence.

2.5. Logic and probability. Several commentators com-
pare ECHO unfavorably with probability theory. Feldman
expresses regret that more attention was not paid to
foundational questions. He contrasts my theory of ex-
planatory coherence with logic and probability theory,
each of which is said to have a relatively clean and well-
understood formal semantics. He wants a similar in-
terpretation for the weights and activity levels in ECHO.
My guess is that such a semantic foundation for explanato-
ry coherence is going to be very difficult to find. In fact,
logic and probability theory do not have much of a
foundation either. The appearance that they have a clear-
ly understood semantics dissipates when one looks close-
ly at basic cases. Consider logic in its best understood
form, first-order predicate calculus, whose Tarskian for-
mal semantics consists of giving a recursive truth defini-
tion for progressively more complex formulas. The sim-
plest formulas are atomic propositions such as “Fa,”
which is semantically interpreted as saying that the object
that provides the interpretation of the constant “a” is in
the set of objects that provides the interpretation of the
predicate “F.” But this account begs a host of founda-
tional questions, particularly what makes a set the in-
terpretation of “F.” Surely it is the meaning of “F” that
determines what objects fall under it, so that the Tarskian
interpretation dodges the central semantic question. The
situation gets even worse when one moves beyond first-
order logic to consider modal notions that are crucial for
understanding scientific discourse. Matters of causality
and explanation require conditionals (if-then statements)
that go well beyond those found in standard logics, for
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exainple, to permit semantic evaluation of counterfactual
conditionals such as “If Bush had not been elected Presi-
dent, then the economy would be stronger.” Formal
semantics for such conditionals generally use the notion
of possible worlds, which are far from being “clean and
well understood.”

Similarly, how can one say that probability theory has a
clean, formal semantics when philosophical debates
about the interpretation of probability still rage? Cohen
(1977), for example, rejects some of the standard axioms
of probability theory [see Cohen “Can Human Irra-
tionality be Experimentally Demonstrated?” BBS 4(3)
1981.], and even philosophers who accept the axioms
debate whether probabilities should be interpreted as
frequencies, propensities, or subjective degrees of belief.
The apparent superiority of logic and probability theory
derives more from their familiar syntax than from any
foundational advantage.

Cohen raises two substantial challenges to my account
of explanatory coherence. The first is based on the intui-
tion that a hypothesis that is used to predict a piece of
evidence gains more confirmation from it than does a
hypothesis that explains it after the fact. I have argued
previously that the apparent importance of prediction is
really a matter of simplicity, in the sense used in TEC:

I contend that the major reason why prediction of new

phenomena appears so important is that such predic-

tions are likely to be a sign of simple explanations. In
making a prediction, one does not have the opportunity
to adjust the theory to an already-known outcome by
means of auxiliary hypotheses. Using only the theory
and already familiar auxiliary assumptions, a future
outcome is predicted with no opportunity for adjust-
ments that are local to the prediction. In contrast,
explanation after the fact can make many special as-

sumptions to derive the outcome from the theory . . .

Successtul predictions are to be valued as signs of the

simplicity of a theory, showing that its explanations do

not require post hoc additions. {Thagard 1988a, pp.

84-85)

If this account is right, then TEG does not need any ad hoc
additions to account for people’s preference for hypoth-
eses that make predictions. The account could be chal-
lenged, however, by providing evidence from the history
of science or controlled psychological experiments that
display people preferring hypotheses that make predic-
tions over ones that provide post hoc explanations with
the same number of auxiliary assumptions.

Cohen’s second point is that neither TEC nor EcHO
provides a way to determine the acceptability of a con-
junction based on the acceptability of the conjuncts. This
would be a grave problem if TEC were intended to be a
general theory of inference, but it is not. As I stated in the
targetarticle (section 10.4), I view inference to explanato-
ry hypotheses as only one of a battery of inferential
mechanisms. We still lack a general theory of how to
combine explanatory inferences with deduction, gener-
alization, specialization, analogy, and statistical reason-
ing. Both Bayesian and Baconian analyses seem to me to
lack the requisite generality. I therefore view the prob-
lem of the acceptability of conjunctions as unsolved and
beyond the scope of TEC. As I pointed out in the target
article (section 10.2), however, the problem in real cases
is not solved by probability theory either, because cal-
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culating the probability of a conjunction requires know-
ing the degree of dependence of the conjuncts, which is
often indeterminate.

Papineau challenges my arguments against probability
theory largely on the grounds that people can learn to
reason better probabilistically. I agree with his general
point and would encourage every effort toimprove proba-
bilistic reasoning. Psychologists, who originally reached
very pessimistic conclusions about people’s ability to
reason statistically, have more recently been investigat-
ing how to teach the use of inferential rules (Holland et al.
1986, Chap. 9). My view, from what Lycan correctly
labels a “weak explanationist” perspective, is that we do
not make all our inferences on the grounds of explanatory
coherence but that we should exploit probablistic knowl-
edge whenever it is available. Nothing that Papineau
says, however, overcomes my basic point, which is that
such knowledge is rarely available in the qualitative
evaluation of scientific theories. My recommendation is
to use statistical inference and probabilistic reasoning
whenever possible, but not to pretend it is always possi-
ble. There is no reason to accept Papineau’s prohibition of
computational models of processes that can be trans-
formed by normative reflection. Understanding through
use of such models how these processes might work can
be an important part of bringing about the transforma-
tion. Contrary to the suggestion of Dawes, I do not follow
Cohen in supposing that what people actually do is
normatively correct; the real is not always rational. I like
Bereiter & Scardamalia’s suggestions about teaching
people to make better judgments of explanatory co-
herence; I doubt that probability theory will be of much
help there, however useful it is for other sorts of
problems.

The major challenge laid down in Dawes’s commentary
is to show that ECHO can deal with Simpson’s paradox.
This paradox arises when a hypothesis, H1, gains accept-
ability from one piece of evidence, EL, and also from
another pieces of evidence, E2, but becomes less accept-
able given the conjunction of E1 and E2. TEC and ECHO
can handle this naturally if E1 and E2 together support
some alternative hypothesis that affects the acceptability
of H1. Here is an example that I think is clearer than the
ones Dawes presents: Suppose that Mike is charged with
committing a murder in New York. The acceptability of
the hypothesis that Mike is innocent is increased by the
piece of evidence that his friend Sam says Mike was in
Philadelphia at the time of the murder. Taken alone, the
acceptability of the innocence view would also be en-
hanced by the evidence that another friend, Fred, says
that Mike was in Boston at the crucial time; but we find
Mike’s innocence less plausible if Sam and Fred both
furnish incompatible alibis. All this is naturally under-
stood in terms of explanatory coherence, as shown by the
input for ECHO listed in Tables 2 and 3. When ECHO is
provided simply with Sam’s testimony, which is ex-
plained by the hypothesis that Mike really was in Phila-
delphia, then the hypothesis that Mike is guilty is defeat-
ed. But in the more complicated case where there are
contradictory alibis, the hypothesis that Mike is guilty is
accepted, so the claim that he is innocent is rejected. I
conjecture that other cases of Simpson’s paradox can
similarly be dealt with by attending to the full complexity
of the networks of competing explanatory hypotheses
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Table 2. Input to £ciio for Mike's simple alibi

{proposition ‘GO “Mike committed the murder in New York.”}
{proposition “G1 “Sam is lying to protect Mike.”)
(proposition ‘11 “Mike was in Philadelphia.”)

(proposition ‘E1  “Sam says that Mike was in Philadelphia.”}

{explain (GO} "CI}
{explain (G} 'EI}
{explain (11} 'E1}

{contradict ‘GO0 11}
{contradict ‘G1 'I1)

(data (EI})

involved in the cases. In Dawes’s case of the drunk in the
bar, we can explain his being drunk before the crime as an
attempt to get his courage up to commit the murder, and
we can explain his heing drunk after the crime as an
attempt to overcome the stress of committing the crime,
but the best explanation of his being in the bar both
before and after the crime is that he spent the whole time
in the bar drinking.

3. Problems with the ecHo model

An important question about the arbitrariness of the
inputs to ECHO is raised by MeCauley. He is skeptical
about how much agreement might be found between
disputants about what constitutes an explanation and
what constitutes an analogy. Skepticism would certainly
be warranted if the Kuhnian view, defended by Mangan
& Palmer, were correct. We would then expect what
counts as an explanation or analogy to vary considerably
from scientist to scientist; but I think this possibility is

Table 3. Input to Ecrio for Mike’s contradictory alibis

(proposition ‘GO “Mike committed the murderin New York.”)
(proposition ‘G1 “Sam is lying to protect Mike.”)
(proposition ‘G2 “Fred is lying to protect Mike.”)
(proposition ‘11 “Mike was in Philadelphia.”)

proposition ‘12 “Mike was in Boston.”)

(
(proposition ‘E1 “Sam says that Mike was in Philadelphia.”)
(proposition 'E2 “Fred says that Mike was in Boston.”)
{explain (GO
{(explain
( .
(
(
{

o

o
><
§=a
B,
=
P S

contradict ‘11 ‘12}
{contradict "GO 11}
(contradict ‘GO 12)
{contradict ‘G1 ‘I1)
(contradict ‘G2 ‘12)
(

data (EI E2 ))




exaggerated. I am surprised that Dietrich had difficulty
distinguishing between hypotheses and evidence in the
case of Poincare’s explanation of the Eureka Phe-
nomenon. My collaborators and I have found the distinc-
tion unproblematic. A proposition is evidence if it de-
scribes the result of observation or experimentation.
Hypotheses, in contrast, explain such results or other
hypotheses. Zytkow asks why OH4, "Oxygen has
weight,” is treated as a hypothesis, not as evidence. This
was obviously a hypothesis for Lavoisier, because oxygen
as such is not observable. The explanatory connection in
Table 1 of the target article between the hypotheses
OH1, OH2, and OH3 and the evidence El is there
because of the background assumption that it was the heat
and light from the oxygen that was produced by the
reaction. The explanation here is not at the level of a
deductive derivation, but at the level of the discourse at
which scientists normally operate.

McDermott sees as central to my model of explanatory
coherence the minimizing of the energy function H
defined by equation (1) in section 4.9. Perhaps he was
misled by my assertion that ECHO stands for “Explanatory
Coherence by Harmany Optimization,” which was only
an attempt to combine a catchy name with a pun. The H
function strikes me as peripheral to the whole model,
whose main function is to show how explanatory hypoth-
eses can be evaluated in complex ways. The reason for
taking the connectionist route is simply that networks
provide a very useful way of simultaneously representing
ahost of evidential relations, and the numerical relaxation
algorithms standardly used in connectionist models are a
very natural way to accomplish parallel satisfaction of the
numerous constraints implicit in the networks that are
created.

Hobbs mounts a substantial challenge: Why bother
with all the apparatus of ECHO when it might appear that a
“naive method” that simply counts propositions does just
as well? The naive method evaluates a theory by subtract-
ing the number of hypotheses it uses from the number of
pieces of evidence it explains; in Hobb’s notation, this is
#E — #H. There are, however, an unlimited number of
cases in which ECHO yields a conclusion different from the
naive method. To take one of the simplest, consider a
theory, T1, consisting of hypotheses [11 and H2, which
are both used together to explain evidence E1 and EZ,
that is, H1 and H2 together explain El, and together
explain E2. The alternative explanations are H3 and H4,
but H3 explains E1 alone and H4 explains E2 alone.
Suppose that H1 contradicts H3 and H2 contradicts H4.
T1 is more unified than the other singleton hypotheses,
and ECHO indeed prefers them, despite the fact that the
naive method calculates #E — #H as 0 in hoth cases. So
even independent of questions of being explained and
analogy, the naive method is not equivalent to ECHO. The
divergence is even clearer in the examples discussed in
section 4.3 of the target article and in relation to Reggia
above. I have already responded to attempts by Hobbs
and Josephson to downplay the significance of analogy
and of hypotheses being explained by other hypotheses.

Bereiter & Scardamalia notice an important problem
that arises in ECHO when several hypotheses compete
against each other: A hypothesis, H1, can get activation
just by virtue of contradicting another hypothesis, H2,
that gets negative activation because it is contradicted by
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a better hypothesis, H3. Thus H1 illicitly gets help from
H3, because H3 drives H2 down, which activates H1.
There are two ways of dealing with this problem, one by a
trivial technical adjustment and the other by enriching
the input. One can often expand the input to notice
contradictions that were previously omitted. I do not see
why Bereiter & Scardamalia’s Satanic hypothesis (“The
Devil is responsible for differences™) cannot be construed
as contradicting the hypotheses of evolution and natural
selection, once the purported explanatory role of the
Satanic hypothesis is further spelled out. On the technical
side, the Common LISP version of ECHO allows one to set
an output threshold so that once the activation of a unit
drops below that threshold, it no longer has any effect on
the activations of other units. In the runs of ECHO we have
done so far, the threshold is effectively ignored by setting
itat —1, the minimum activation level, but in simulations
using the analogy-mapping program AacME (Holyoak &
Thagard, in press), we routinely set the threshold at 0.
This is because in ACME, as in Bereiter & Scardainalia’s
exainple, there are often multiple competing hypotheses,
and it is necessary to prevent a poor hypothesis from
getting accepted just because it contradicts one that is
even worse. So in cases where there are more than two
competing hypotheses, one can set the output threshold
at 0, preventing the badness of one hypothesis from
helping others that contradict it.

Simon compares ECHO unfavorably with sTAHL, an
impressive program that infers chemical components
from descriptions of reactions in terms of inputs and
outputs. The major distinction between ECHO and STAHL
is obviously that sTAHL is a discovery program whereas
ECHO models evaluation. As I have frequently stressed,
ECHO does not generate hypotheses; a more appropriate
comparison might be STAHL versus the tag team of ECHO
and PI (Thagard 1988a), which does some simple forms of
abduction, although PI has not been applied to chemical
examples. Independent of discovery, it should be clear
that EcHO does more complicated kinds of theory evalua-
tion than $TAHL. STAHL only considers pieces of evi-
dence based on the inputs and outputs of reactions, and
even here it is historically limited. As I have summarized
elsewhere (Thagard, in press b), Lavoisier's development
of the oxygen theory took place over several years and
clearly involved processes that go well beyond what
STAHL is capable of. For example, the first input state-
ment listed by Simon is

(reacts inputs {charcoal air} outputs {phlogiston ash air}).

This is clearly not a statement of evidence, because
phlogiston is not observable {because, we would now say,
it does not exist). This statement should really be treated
as a hypothesis to be evaluated on the basis of what is in
fact observed. Lavoisier’s own writings show that he was
dealing with data that went well beyond simple descrip-
tions of inputs and outputs. Many of these involved
quantitative relations — for example, that things gain
weight when they undergo combustion or calcination.
EcHo is undoubtedly inferior to STAHL in not considering
the content of propositions, a consideration that is crucial
for generating explanations and hypotheses, but EcHO is
superior in that it is not restricted to a single domain or a
simple method of hypothesis evaluation. It would be
presumptuous to say of either ECHO or sTAHL that it

BEHAVIORAL AND BRAIN SCIENCES (1989) 12:3 497




Response/Thagard: Explanatory coherence

“carries out genuine reasoning.” STAHL has its strengths,
but ECHO is a much more comprehensive model of the
process of.theory evaluation.

Zytkow, Simon’s collaborator on STAHL, appropriately
suggests that sTAHL and the similar program GLAUBER
can be used to generate input for ECHO. These programs
can then be used to generate the hypotheses that EcHo
evaluates, although they seem to me too limited to
substantiate Zytkow's claim to generate “most of” this
input. Still, the general account is right, that discovery
programs like sTAHL should be combined with evaluation
programs like ECHO.

Zytkow also raises the question of whether TEC and
ECHO could explain not just why Lavoisier thought his
oxygen theory was best but why proponents of the phlo-
giston theory changed over to the oxygen theory. As he
points out, the phlogiston theory was not static and was
modified in the face of such discoveries as oxygen (de-
phlogisticated air) and hydrogen, which some theorists
identified with phlogiston. I do not know whether the
historical record is rich enough to trace the development
of some of these phlogistinians, but I do not see any
reason why ECHO could not be used to chart their devel-
opment toward the oxygen theory as they gradually came
to see it as more and more coherent.

4. Psychological adequacy

I agree with Klayman & Hogarth that the ECHO analyses
presented in the target article do not constitute good tests
of the psychological validity of TEC and ECHO. Such tests
will have to be provided by controlled psychological
experiments. In addition, efforts should be made to see
whether ECHO naturally models some of the psychologi-
cal effects that Klayman & Hogarth mention. Ranney and
Thagard (1988) is just the beginning of what I hope will be
a series of experiments pinning the empirical side of
ECHO down more effectively.

Earle also notes some of the problems involved in
testing ECHO's psychological validity. Researchers who
try to test ECHO will have to be sensitive to the problems
of input representation and free parameters. The latter is
probably most easily dealt with, because the default
parameters in ECHO have been applied to such a wide
range of cases that it would seem fair to expect them to
apply also to the results of new psychological experi-
ments. Divining the belief systems and explanatory co-
herence relations of subjects will of course be difficult.
But there is at least the promise of a series of psychologi-
cal experiments by different researchers based on TEC
and EcHO.

Cheng & Keane suggest two modifications they deem
essential if TEC and ECHO are to be psychologically
adequate. First, my account seems to them too holistic
and parallel; this view is based on the grounds that people
approach problems of theory evaluation in a much mare
piecemeal fashion. It is undoubtedly true that people do
not consciously consider all the hypotheses and evidence
simultaneously, and probably could not do so because of
limitations of short-term memory. My assumption, how-
ever, is that evaluations of the explanatory coherence of a
set of propositions occurs unconsciously, and at this level
there is no reason to assume that it cannot be fully
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parallel. People make iinplicit judgments that something
“makes sense” to them, based, I would argue, on this sort
of holistic judgment. A full cognitive model would inte-
grate ECHO with the processes of attention and conscious
deliberation that Cheng & Keane rightly point to, but I
see no serious problems in accomplishing the integration.

Chi raises the intriguing possibility that TEC and EcHO
could provide a “transition mechanism™ to explain con-
ceptual change in ordinary people, particularly the radi-
cal restructuring that some psychologists have attributed
to children. ECHO does help to understand how revolu-
tionary conceptual change can take place in science
(Thagard, in press b; Thagard & Nowak, in press), but the
jury is still out concerning how similar such change is to
what children undergo. By looking at scientific exainples,
I'have been able to specify the transformations in concep-
tual and explanatory structures that have taken place in
several scientific revolutions, whereas most of the discus-
sions in the literature in developmental psychology are
vaguer. Over the next few vears, I expect that much
progress will be made in determining the similarities and
differences between scientists’ and children’s conceptual
changes, once both are described more fully than has so
far occurred.

Chi raises a number of important problems for my
account as a full psychological model. Aspects of concep-
tual change that may be crucial include the realization
that a particular hypothesis explains a particular piece of
evidence. Chi suggests that someone who disagrees with
a hypothesis may well resist encoding a piece of evidence
as explained by the hypothesis. This is a psychological
phenomenon that goes well bevond TEC and EcHOo, and
research is very much needed to see whether it can be
modeled and to what extent it interferes with the applica-
tion of considerations of explanatory coherence. Perhaps,
as Bereiter & Scardamalia suggest, people can be taught
not to resist alternative explanations and even to seek
them out, just as graduate students are taught to eschew
dogmatism. The empirical question concerns not just
whether people are much worse than ECHO in integrating
multiple pieces of evidence, but also whether they can be
taught to be better at it.

I am excited that Bereiter & Scardamalia have had
some success with 11-year-olds using ECHO, and am not
surprised at the difficulties that arise. I agree that apply-
ing ECHO is problematic in domains where much of what
is at issue is whether the evidence is any good. Our
attempt to apply ECHO to the debate about parapsycholo-
gy faltered because most of the issues there concern the
quality of the experiments rather than the explanatory
coherence of competing theories. TEC does not purport to
be a general theory of inference, and in particular it does
not apply to the statistical and methodological inferences
that underlie data analysis. What Bereiter & Scardamalia
call “contextual facts” figure in some of my examples, but
not to the same degree as in theirs. One can easily
imagine a con artist weaving a ridiculous hypothesis into a
blanket of undisputed facts in such a way that a person
fails to evaluate the hypothesis, merely seeing it as
making sense with respect to the rest of the information.
People may well be susceptible to this kind of strategy to
an extent that would undermine their use of evidence and
considerations of explanatory coherence. But we know
that people can learn to get better at statistical reasoning,




and Bereiter & Scardamalia give us reason to hope that
even children can be taught to evaluate hypotheses more
effectively.

Read & Miller propose very inviting avenues for ex-
ploring the application of TEC and EcHO to social phe-
nomena. Althougli I am enthusiastic about the research
they propose, I want to offer a few words of caution
concerning potential applications of explanatory co-
herence ideas to the phenomena they consider. First,
investigators should be careful to distinguish explanatory
from other notions of coherence. It would be illegitimate
to give TEC or ECHO credit for accounting for the results of
experiments that tapped into coherence phenomena that
were independent of explanation. Second, as several
commentators have suggested, more work needs to be
done by researchers in psychology as well as in philoso-
phy and Al concerning what explanations are. The knowl-
edge structure approach advocated by Read will probably
not constitute a full account of explanation. Nevertheless,
I'look forward to the results of Read & Miller’s experi-
ments, which I hope will suggest interesting extensions
and revisions of the ECHO model.

I sum, I see several appealing avenues for continuing
work on explanatory coherence. The most wide-open
road is psychological experimentation to evaluate the
adequacy of TEC and ECHO as accounts of human cogni-
tion. Theoretical development is also highly desirable,
particularly in relation to the construction of a cognitive
theory of explanation. Theory development should occur
in the context of an attempt to develop a fully integrated
computational model of the generation as well as the
evaluation of explanatory hypotheses. Perhaps someday
an ECHO analysis of TEC will show that explanatory co-
herence theory performs well by its own standards.
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